skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Munn_IV, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In Neurospora fungi, the ascospores formed during reproduction will most often be black and viable. Occasionally, these ascospores will end up inviable and white or yellow. The discovery of a selfish genetic element called Spore killer (Sk) in 1979 gave researchers insight into a mechanism that causes some Neurospora crosses to produce a consistent ratio of 4 black, viable ascospores and 4 inviable, white ascospores. In these 4:4 splits, the Spore killer genetic element causes the death of exactly half of the ascospores. There are now three known spore killers in Neurospora: Sk-1, Sk-2, and Sk-3. This thesis examines the role of a DNA element within Sk-3. In an Sk-3 × Sk-3-sensitive (Sk-S) cross, Sk-3 genes are transmitted to the four black, viable ascospores, and, through a poorly understood mechanism, the Sk-3 genes kill ascospores that fail to inherit these genes. The Sk-3 genes reside on Chromosome III, but the exact locations of all critical genes are unknown. Preliminary results suggest that a DNA interval called v350 may harbor a critical Sk-3 gene. For example, deletion of the v350 interval eliminates Sk-3 spore killing. Here, I explore the deletion of an additional DNA interval located within v350. Specifically, I tested the role of DNA interval v376 on Sk-3 spore killing. The research presented here should help determine why v350, and perhaps v376, are required for spore killing by Neurospora Sk-3. 
    more » « less