- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Chowdhury, Emdadul Haque (1)
-
Dionne, Jaymes (1)
-
Giri, Ashutosh (1)
-
Munshi, Md_Adnan Mahathir (1)
-
Paniagua-Guerra, Luis E (1)
-
Ramos-Alvarado, Bladimir (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Turning gold nanoparticles (AuNPs) into nanoscale heat sources via light irradiation has prompted significant research interest, particularly for biomedical applications, over the past few decades. The AuNP’s tunable photothermal effect, notable biocompatibility, and ability to serve as vehicles for temperature-sensitive chemical linkers enable thermo-therapeutics, such as localized drug/gene delivery and thermal ablation of cancerous tissue. Thermal transport in aqueous AuNP solutions stands as the fundamental challenge to developing targeted thermal therapies; thus, this review article surveys recent advancements in our understanding of heat transfer and surface chemistry in AuNPs, with a particular focus on thermal boundary conductance across gold- and functionalized-gold-water interfaces. This review article highlights computational advances based on molecular dynamics simulations that offer valuable insights into nanoscopic interfacial heat transfer in solvated interfaces, particularly for chemically functionalized AuNPs. Additionally, it outlines current experimental techniques for measuring interfacial thermal transport, their limitations, and potential pathways to improve sensitivity. This review further examines computational methodologies to guide the accurate modeling of solvated gold interfaces. Finally, it concludes with a discussion of future research directions aimed at deepening our understanding of interfacial heat transfer in solvated AuNPs, crucial to optimize thermoplasmonic applications.more » « lessFree, publicly-accessible full text available September 18, 2026
An official website of the United States government
