- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Murai, Satoshi (5)
-
Angarone, Robert (1)
-
Biermann, Jennifer (1)
-
Commins, Patricia (1)
-
Galetto, Federico (1)
-
Harada, Megumi (1)
-
Horiguchi, Tatsuya (1)
-
Karn, Trevor (1)
-
Nagel, Uwe (1)
-
Novik, Isabella (1)
-
O'Keefe, Augustine (1)
-
Precup, Martha (1)
-
Raicu, Claudiu (1)
-
Rhoades, Brendon (1)
-
Römer, Tim (1)
-
Seceleanu, Alexandra (1)
-
Tymoczko, Julianna (1)
-
Zheng, Hailun (1)
-
de Alba, Hernán (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Murai, Satoshi; Novik, Isabella; Zheng, Hailun (, International Mathematics Research Notices)Abstract A conjecture of Kalai asserts that for $$d\geq 4$$, the affine type of a prime simplicial $$d$$-polytope $$P$$ can be reconstructed from the space of affine $$2$$-stresses of $$P$$. We prove this conjecture for all $$d\geq 5$$. We also prove the following generalization: for all pairs $(i,d)$ with $$2\leq i\leq \lceil \frac d 2\rceil -1$$, the affine type of a simplicial $$d$$-polytope $$P$$ that has no missing faces of dimension $$\geq d-i+1$$ can be reconstructed from the space of affine $$i$$-stresses of $$P$$. A consequence of our proofs is a strengthening of the Generalized Lower Bound Theorem: it was proved by Nagel that for any simplicial $(d-1)$-sphere $$\Delta $$ and $$1\leq k\leq \lceil \frac {d}{2}\rceil -1$$, $$g_{k}(\Delta )$$ is at least as large as the number of missing $(d-k)$-faces of $$\Delta $$; here we show that, for $$1\leq k\leq \lfloor \frac {d}{2}\rfloor -1$$, equality holds if and only if $$\Delta $$ is $$k$$-stacked. Finally, we show that for $$d\geq 4$$, any simplicial $$d$$-polytope $$P$$ that has no missing faces of dimension $$\geq d-1$$ is redundantly rigid, that is, for each edge $$e$$ of $$P$$, there exists an affine $$2$$-stress on $$P$$ with a non-zero value on $$e$$.more » « less
-
Murai, Satoshi; Raicu, Claudiu (, Journal of the London Mathematical Society)
-
Harada, Megumi; Horiguchi, Tatsuya; Murai, Satoshi; Precup, Martha; Tymoczko, Julianna (, Mathematische Zeitschrift)
-
Biermann, Jennifer; de Alba, Hernán; Galetto, Federico; Murai, Satoshi; Nagel, Uwe; O'Keefe, Augustine; Römer, Tim; Seceleanu, Alexandra (, Journal of Algebra)
An official website of the United States government
