- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
01000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bianchi, Antonio (1)
-
Enck, William (1)
-
Kapravelos, Alexandros (1)
-
Koishybayev, Igibek (1)
-
Machiry, Aravind (1)
-
Muralee, Siddharth Muralee (1)
-
Nahapetyan, Aleksandr (1)
-
Reaves, Brad (1)
-
Tystahl, Greg (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Millions of software projects leverage automated workflows, like GitHub Actions, for performing common build and deploy tasks. While GitHub Actions have greatly improved the software build process for developers, they pose significant risks to the software supply chain by adding more dependencies and code complexity that may introduce security bugs. This paper presents ARGUS, the first static taint analysis system for identifying code injection vulnerabilities in GitHub Actions. We used ARGUS to perform a large-scale evaluation on 2,778,483 Workflows referencing 31,725 Actions and discovered critical code injection vulnerabilities in 4,307 Workflows and 80 Actions. We also directly compared ARGUS to two existing pattern-based GitHub Actions vulnerability scanners, demonstrating that our system exhibits a marked improvement in terms of vulnerability detection, with a discovery rate more than seven times (7x) higher than the state-of-the-art approaches. These results demonstrate that command injection vulnerabilities in the GitHub Actions ecosystem are pervasive and require taint analysis to be detected.more » « less