skip to main content

Search for: All records

Creators/Authors contains: "Murat, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. InAs quantum dots (QDs) embedded into a waveguiding GaAs semiconductor matrix may produce scintillation detectors with exceptional speed and yield, making them valuable for nuclear security, medical imaging, and high energy physics applications. In this work, we developed thick (~25um) epitaxial heterostructres with high luminescence efficiency composed of self-assembled nano-engineered InAs QDs grown by molecular beam epitaxy. The bulk GaAs acts as a stopping material for incident particles and as a waveguide when layer-transferred onto a low-index substrate. Waveguiding and self-absorption (<1cm-1) were studied using photoluminescence with scanning laser excitation and modeled with ray optics approximation and geometrical coupling ofmore »high-index waveguide to a collection fiber. Scintillating signals from alpha-particles were analyzed with an external photodiode (PD) and an integrated PD which provided an improved optical coupling. The mean charge collected by the integrated PD corresponded to 5×1e4 photoelectrons per 1 MeV of deposited energy, or ~20% of the theoretically achievable light yield. Combined with the previously measured QD scintillation time of 0.3-0.6 ns, this makes the InAs/GaAs QD heterostructures the fastest high yield scintillation material reported.« less
  2. Abstract The CMS Inner Tracker, made of silicon pixel modules, will be entirely replaced prior to the start of the High Luminosity LHC period. One of the crucial components of the new Inner Tracker system is the readout chip, being developed by the RD53 Collaboration, and in particular its analogue front-end, which receives the signal from the sensor and digitizes it. Three different analogue front-ends (Synchronous, Linear, and Differential) were designed and implemented in the RD53A demonstrator chip. A dedicated evaluation program was carried out to select the most suitable design to build a radiation tolerant pixel detector able tomore »sustain high particle rates with high efficiency and a small fraction of spurious pixel hits. The test results showed that all three analogue front-ends presented strong points, but also limitations. The Differential front-end demonstrated very low noise, but the threshold tuning became problematic after irradiation. Moreover, a saturation in the preamplifier feedback loop affected the return of the signal to baseline and thus increased the dead time. The Synchronous front-end showed very good timing performance, but also higher noise. For the Linear front-end all of the parameters were within specification, although this design had the largest time walk. This limitation was addressed and mitigated in an improved design. The analysis of the advantages and disadvantages of the three front-ends in the context of the CMS Inner Tracker operation requirements led to the selection of the improved design Linear front-end for integration in the final CMS readout chip.« less
    Free, publicly-accessible full text available December 1, 2022
  3. Abstract During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m 2 of silicon sensors was to compare sensors of baseline thickness (about 300 μm) to thinned sensors (about 240 μm), which promised several benefits at high radiationmore »levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 × 10 15 n eq /cm 2 . The measurement results demonstrate that sensors with about 300 μm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker.« less
    Free, publicly-accessible full text available November 1, 2022