skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Murphy, Bailey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Climate change is intensifying the hydrologic cycle and altering ecosystem function, including water flux to the atmosphere through evapotranspiration (ET). ET is made up of evaporation (E) via non‐stomatal surfaces, and transpiration (T) through plant stomata which are impacted by global changes in different ways. E and T are difficult to measure independently at the ecosystem scale, especially across multiple sites that represent different land use and land management strategies. To address this gap in understanding, we applied flux variance similarity (FVS) to quantify how E and T differ across 13 different ecosystems measured using eddy covariance in a 10 × 10 km area from the CHEESEHEAD19 experiment in northern Wisconsin, USA. The study sites included eight forests with a large deciduous broadleaf component, three evergreen needleleaf forests, and two wetlands. Average T/ET for the study period averaged nearly 52% in forested sites and 45% in wetlands, with larger values after excluding periods following rain events when evaporation from canopy interception may be expected. A dominance analysis revealed that environmental variables explained on average 69% of the variance of half‐hourly T, which decreased from summer to autumn. Deciduous and evergreen forests showed similar E trajectories over time despite differences in vegetation phenology, and vapor pressure deficit explained some 13% of the variance E in wetlands but only 5% or less in forests. Retrieval of E and T within a dense network of flux towers lends confidence that FVS is a promising approach for comparing ecosystem hydrology across multiple sites to improve our process‐based understanding of ecosystem water fluxes. 
    more » « less
  2. Abstract Structurally complex forests optimize resources to assimilate carbon more effectively, leading to higher productivity. Information obtained from Light Detection and Ranging (LiDAR)‐derived canopy structural complexity (CSC) metrics across spatial scales serves as a powerful indicator of ecosystem‐scale functions such as gross primary productivity (GPP). However, our understanding of mechanistic links between forest structure and function, and the impact of disturbance on the relationship, is limited. Here, we paired eddy covariance measurements of carbon and water fluxes from nine forested sites within the 10 × 10 km CHEESEHEAD19 study domain in Northern Wisconsin, USA with drone LiDAR measurements of CSC to establish which CSC metrics were strong drivers of GPP, and tested potential mediators of the relationship. Mechanistic relationships were inspected at five resolutions (0.25, 2, 10, 25, and 50 m) to determine whether relationships persisted with scale. Vertical heterogeneity metrics were the most influential in predicting productivity for forests with a significant degree of heterogeneity in management, forest type, and species composition. CSC metrics included in the structure‐function relationship as well as driver strength was dependent on metric calculation resolution. The relationship was mediated by light use efficiency (LUE) and water use efficiency (WUE), with WUE being a stronger mediator and driver of GPP. These findings allow us to improve representation in ecosystem models of how CSC impacts light and water‐sensitive processes, and ultimately GPP. Improved models enhance our capacity to accurately simulate forest responses to management, furthering our ability to assess climate mitigation strategies. 
    more » « less