skip to main content

Search for: All records

Creators/Authors contains: "Murphy, C. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The rate and timing of hydrologically forced landslides is a complex function of precipitation patterns, material properties, topography, and groundwater hydrology. In the simplest form, however, slopes fail when subsurface pore pressure grows large enough to exceed the Mohr‐Coulomb failure criterion. The capacity for pore pressure rise in a landslide is determined in part by the thickness of the unsaturated zone above the water table, which itself is set by weathering patterns that should have predictable patterns across different lithologies. To investigate how this structure affects landslide behavior, we exploit a multi‐year record of precipitation, pore pressure, and velocity from Oak Ridge earthflow, a slow‐moving landslide set in Franciscan mélange, northern California, USA. In conjunction with electrical resistivity tomography and hydraulic conductivity measurements, these data show that Oak Ridge has a thin weathered profile that is comparable in thickness to other mélange landslides in California. We propose that due to the inherently thin vadose zone, mélange landscapes experience an unusually high water table that frequently brings them close to movement; however, the capacity to increase stress is limited by the small amount of dynamic storage available. Instead, excess pore pressure is shed via springs and saturation overland flow once the water table reaches the surface. Linkages between weathering patterns, hydrology, and deformation can explain behavior patterns exhibited by Franciscan mélange earthflows across a large precipitation gradient.

    more » « less
  2. Abstract

    Like faults, landslides can slip slowly for decades or accelerate catastrophically. However, whereas experimentally derived friction laws provide mechanistically based explanations for similarly diverse behavior on faults, little monitoring exists over the temporal and spatial scales required to more clearly illuminate the mechanics of landslide friction. Here we show that displacement of an active slow landslide is accommodated primarily through mm‐scale stick‐slip events that recur on timescales of minutes to hours on asperities that are small (<100 m) relative to the landslide. The frequency of slip events tracks both landslide velocity and pore fluid pressure. The stick‐slip nature demonstrates by itself that slow slip is governed, at least in part, by velocity‐weakening frictional asperities. This observation, in combination with the sensitivity of slow slip to pore fluid pressure and the small relative scale of asperities, suggests similarities between slow slip in landslides and episodic slow slip along faults.

    more » « less