- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Murphy, Nicholas A. (2)
-
Jara-Almonte, Jonathan (1)
-
Ji, Hantao (1)
-
Linker, Jon (1)
-
Mikić, Zoran (1)
-
Murphy, Nicholas A (1)
-
Ni, Lei (1)
-
Raymond, John C. (1)
-
Reeves, Katharine K. (1)
-
Shen, Chengcai (1)
-
Török, Tibor (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& *Soto, E. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Nonequilibrium ionization (NEI) is essentially required for astrophysical plasma diagnostics once the plasma status departs from the assumption of ionization equilibrium. In this work, we perform fast NEI calculations combined with magnetohydrodynamic (MHD) simulations and analyze the ionization properties of a Petschek-type magnetic reconnection current sheet during solar eruptions. Our simulation reveals Petschek-type slow-mode shocks in the classical Spitzer thermal conduction models and conduction flux-limitation situations. The results show that under-ionized features can be commonly found in shocked reconnection outflows and thermal halo regions outside the shocks. The departure from equilibrium ionization strongly depends on plasma density. In addition, this departure is sensitive to the observable target temperature: the high-temperature iron ions are strongly affected by the effects of NEI. The under-ionization also affects the synthetic SDO/AIA intensities, which indicates that the reconstructed hot reconnection current sheet structure may be significantly underestimated either for temperature or apparent width. We also perform an MHD-NEI analysis on the reconnection current sheet in the classical solar flare geometry. Finally, we show the potential reversal between the under-ionized and over-ionized states at the lower tip of reconnection current sheets where the downward outflow collides with closed magnetic loops, which can strongly affect multiple SDO/AIA band ratios along the reconnection current sheet.more » « less
-
Reeves, Katharine K.; Török, Tibor; Mikić, Zoran; Linker, Jon; Murphy, Nicholas A. (, The Astrophysical Journal)
-
Ni, Lei; Ji, Hantao; Murphy, Nicholas A; Jara-Almonte, Jonathan (, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences)Magnetic reconnection has been intensively studied in fully ionized plasmas. However, plasmas are often partially ionized in astrophysical environments. The interactions between the neutral particles and ionized plasmas might strongly affect the reconnection mechanisms. We review magnetic reconnection in partially ionized plasmas in different environments from theoretical, numerical, observational and experimental points of view. We focus on mechanisms which make magnetic reconnection fast enough to compare with observations, especially on the reconnection events in the low solar atmosphere. The heating mechanisms and the related observational evidence of the reconnection process in the partially ionized low solar atmosphere are also discussed. We describe magnetic reconnection in weakly ionized astrophysical environments, including the interstellar medium and protostellar discs. We present recent achievements about fast reconnection in laboratory experiments for partially ionized plasmas.more » « less
An official website of the United States government
