skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Murray, Steven G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Diffuse radio recombination lines (RRLs) in the Galaxy are possible foregrounds for redshifted 21 cm experiments. We use EDGES drift scans centered at −26.°7 decl. to characterize diffuse RRLs across the southern sky. We find that RRLs averaged over the large antenna beam (72° × 110°) reach minimum amplitudes of R.A. = 2–6 hr. In this region, the Cαabsorption amplitude is 33 ± 11 mK (1σ) averaged over 50–87 MHz (27 ≳z≳ 15 for the 21 cm line) and increases strongly as frequency decreases. Cβand Hαlines are consistent with no detection with amplitudes of 13 ± 14 and 12 ± 10 mK (1σ), respectively. At 108–124.5 MHz (z≈ 11) in the same region, we find no evidence for carbon or hydrogen lines at the noise level of 3.4 mK (1σ). Conservatively assuming that observed lines come broadly from the diffuse interstellar medium, as opposed to a few compact regions, these amplitudes provide upper limits on the intrinsic diffuse lines. The observations support expectations that Galactic RRLs can be neglected as significant foregrounds for a large region of sky until redshifted 21 cm experiments, particularly those targeting cosmic dawn, move beyond the detection phase. We fit models of the spectral dependence of the lines averaged over the large beam of EDGES, which may contain multiple line sources with possible line blending, and find that including degrees of freedom for expected smooth, frequency-dependent deviations from local thermodynamic equilibrium (LTE) is preferred over simple LTE assumptions for Cαand Hαlines. For Cαwe estimate departure coefficients 0.79 <bnβn< 4.5 along the inner Galactic plane and 0 <bnβn< 2.3 away from the inner Galactic plane. 
    more » « less
  2. ABSTRACT Cross-correlating 21cm and Lyα intensity maps of the Epoch of Reionization promises to be a powerful tool for exploring the properties of the first galaxies. Next-generation intensity mapping experiments such as the Hydrogen Epoch of Reionization Array (HERA) and SPHEREx will individually probe reionization through the power spectra of the 21cm and Lyα lines respectively, but will be limited by bright foregrounds and instrumental systematics. Cross-correlating these measurements could reduce systematics, potentially tightening constraints on the inferred astrophysical parameters. In this study, we present forecasts of cross-correlation taking into account the effects of exact uv-sampling and foreground filtering to estimate the feasibility of HERAxSPHEREx making a detection of the 21cm-Lyα cross-power spectrum. We also project the sensitivity of a cross-power spectrum between HERA and the proposed next-generation Cosmic Dawn Intensity Mapper. By isolating the sources of uncertainty, we explore the impacts of experimental limitations such as foreground filtering and Lyα thermal noise uncertainty have on making a detection of the cross-power spectrum. We then implement this strategy in a simulation of the cross-power spectrum and observational error to identify redshifts where fiducial 21cmFAST models predict the highest signal-to-noise detection (z ∼ 8). We conclude that detection of the SPHEREx-HERA cross-correlation will require an optimistic level of 21cm foreground filtering, as well as deeper thermal noise integrations due to a lack of overlapping sensitive modes but for CDIM with its larger range of scales and lower noise forecast detection levels, may be possible even with stricter 21cm foreground filtering. 
    more » « less
  3. ABSTRACT Accurately accounting for spectral structure in spectrometer data induced by instrumental chromaticity on scales relevant for detection of the 21-cm signal is among the most significant challenges in global 21-cm signal analysis. In the publicly available Experiment to Detect the Global Epoch of Reionization Signature low-band data set, this complicating structure is suppressed using beam-factor-based chromaticity correction (BFCC), which works by dividing the data by a sky-map-weighted model of the spectral structure of the instrument beam. Several analyses of these data have employed models that start with the assumption that this correction is complete. However, while BFCC mitigates the impact of instrumental chromaticity on the data, given realistic assumptions regarding the spectral structure of the foregrounds, the correction is only partial. This complicates the interpretation of fits to the data with intrinsic sky models (models that assume no instrumental contribution to the spectral structure of the data). In this paper, we derive a BFCC data model from an analytical treatment of BFCC and demonstrate using simulated observations that, in contrast to using an intrinsic sky model for the data, the BFCC data model enables unbiased recovery of a simulated global 21-cm signal from beam-factor chromaticity-corrected data in the limit that the data are corrected with an error-free beam-factor model. 
    more » « less
  4. ABSTRACT We develop a Bayesian model that jointly constrains receiver calibration, foregrounds, and cosmic 21 cm signal for the EDGES global 21 cm experiment. This model simultaneously describes calibration data taken in the lab along with sky-data taken with the EDGES low-band antenna. We apply our model to the same data (both sky and calibration) used to report evidence for the first star formation in 2018. We find that receiver calibration does not contribute a significant uncertainty to the inferred cosmic signal ($$\lt 1{{\ \rm per\ cent}}$$), though our joint model is able to more robustly estimate the cosmic signal for foreground models that are otherwise too inflexible to describe the sky data. We identify the presence of a significant systematic in the calibration data, which is largely avoided in our analysis, but must be examined more closely in future work. Our likelihood provides a foundation for future analyses in which other instrumental systematics, such as beam corrections and reflection parameters, may be added in a modular manner. 
    more » « less
  5. null (Ed.)
  6. Abstract This paper presents the design and deployment of the Hydrogen Epoch of Reionization Array (HERA) phase II system. HERA is designed as a staged experiment targeting 21 cm emission measurements of the Epoch of Reionization. First results from the phase I array are published as of early 2022, and deployment of the phase II system is nearing completion. We describe the design of the phase II system and discuss progress on commissioning and future upgrades. As HERA is a designated Square Kilometre Array pathfinder instrument, we also show a number of “case studies” that investigate systematics seen while commissioning the phase II system, which may be of use in the design and operation of future arrays. Common pathologies are likely to manifest in similar ways across instruments, and many of these sources of contamination can be mitigated once the source is identified. 
    more » « less
  7. ABSTRACT Combining the visibilities measured by an interferometer to form a cosmological power spectrum is a complicated process. In a delay-based analysis, the mapping between instrumental and cosmological space is not a one-to-one relation. Instead, neighbouring modes contribute to the power measured at one point, with their respective contributions encoded in the window functions. To better understand the power measured by an interferometer, we assess the impact of instrument characteristics and analysis choices on these window functions. Focusing on the Hydrogen Epoch of Reionization Array (HERA) as a case study, we find that long-baseline observations correspond to enhanced low-k tails of the window functions, which facilitate foreground leakage, whilst an informed choice of bandwidth and frequency taper can reduce said tails. With simple test cases and realistic simulations, we show that, apart from tracing mode mixing, the window functions help accurately reconstruct the power spectrum estimator of simulated visibilities. The window functions depend strongly on the beam chromaticity and less on its spatial structure – a Gaussian approximation, ignoring side lobes, is sufficient. Finally, we investigate the potential of asymmetric window functions, down-weighting the contribution of low-k power to avoid foreground leakage. The window functions presented here correspond to the latest HERA upper limits for the full Phase I data. They allow an accurate reconstruction of the power spectrum measured by the instrument and will be used in future analyses to confront theoretical models and data directly in cylindrical space. 
    more » « less
  8. ABSTRACT Radio interferometers aiming to measure the power spectrum of the redshifted 21 cm line during the Epoch of Reionization (EoR) need to achieve an unprecedented dynamic range to separate the weak signal from overwhelming foreground emissions. Calibration inaccuracies can compromise the sensitivity of these measurements to the effect that a detection of the EoR is precluded. An alternative to standard analysis techniques makes use of the closure phase, which allows one to bypass antenna-based direction-independent calibration. Similarly to standard approaches, we use a delay spectrum technique to search for the EoR signal. Using 94 nights of data observed with Phase I of the Hydrogen Epoch of Reionization Array (HERA), we place approximate constraints on the 21 cm power spectrum at z = 7.7. We find at 95 per cent confidence that the 21 cm EoR brightness temperature is ≤(372)2 ‘pseudo’ mK2 at 1.14 ‘pseudo’ h Mpc−1, where the ‘pseudo’ emphasizes that these limits are to be interpreted as approximations to the actual distance scales and brightness temperatures. Using a fiducial EoR model, we demonstrate the feasibility of detecting the EoR with the full array. Compared to standard methods, the closure phase processing is relatively simple, thereby providing an important independent check on results derived using visibility intensities, or related. 
    more » « less