skip to main content

Search for: All records

Creators/Authors contains: "Mustafa, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2023
  2. Free, publicly-accessible full text available November 1, 2022
  3. Dear Editor-in-Chief: We have given two articles published recently in Science of the Total Environment by Mandal and Pal (2020) and Zambrano-Monserrate et al. (2020) a thorough reading. Both articles present a significant association between the novel Coronavirus (COVID-19) social distancing policies and improvement in environmental quality such as air pollution, land surface temperature, and noise. Both articles present good research, complemented by detailed explanations and displays, yet we have a few concerns that affect the interpretation and meaning of the results.
  4. This paper presents a resilient control framework for distributed frequency and voltage control of AC microgrids under data manipulation attacks. In order for each distributed energy resource (DER) to detect any misbehavior on its neighboring DERs, an attack detection mechanism is first presented using a Kullback-Liebler (KL) divergence-based criterion. An attack mitigation technique is then proposed that utilizes the calculated KL divergence factors to determine trust values indicating the trustworthiness of the received information. Moreover, DERs continuously generate a self-belief factor and communicate it with their neighbors to inform them of the validity level of their own outgoing information. DERsmore »incorporate their neighbors' self-belief and their own trust values in their control protocols to slow down and mitigate attacks. It is shown that the proposed cyber-secure control effectively distinguishes data manipulation attacks from legitimate events. The performance of proposed secure frequency and voltage control techniques is verified through the simulation of microgrid tests system implemented on IEEE 34-bus test feeder with six DERs.« less
  5. ABSTRACT Bose–Einstein condensate dark matter (BECDM, also known as fuzzy dark matter) is motivated by fundamental physics and has recently received significant attention as a serious alternative to the established cold dark matter (CDM) model. We perform cosmological simulations of BECDM gravitationally coupled to baryons and investigate structure formation at high redshifts (z ≳ 5) for a boson mass m = 2.5 × 10−22 eV, exploring the dynamical effects of its wavelike nature on the cosmic web and the formation of first galaxies. Our BECDM simulations are directly compared to CDM as well as to simulations where the dynamical quantum potential ismore »ignored and only the initial suppression of the power spectrum is considered – a warm dark matter-like (‘WDM’) model often used as a proxy for BECDM. Our simulations confirm that ‘WDM’ is a good approximation to BECDM on large cosmological scales even in the presence of the baryonic feedback. Similarities also exist on small scales, with primordial star formation happening both in isolated haloes and continuously along cosmic filaments; the latter effect is not present in CDM. Global star formation and metal enrichment in these first galaxies are delayed in BECDM/‘WDM’ compared to the CDM case: in BECDM/‘WDM’ first stars form at z ∼ 13/13.5, while in CDM star formation starts at z ∼ 35. The signature of BECDM interference, not present in ‘WDM’, is seen in the evolved dark matter power spectrum: although the small-scale structure is initially suppressed, power on kpc scales is added at lower redshifts. Our simulations lay the groundwork for realistic simulations of galaxy formation in BECDM.« less