skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nägele, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Prize-Collecting TSP is a variant of the traveling salesperson problem where one may drop vertices from the tour at the cost of vertex-dependent penalties. The quality of a solution is then measured by adding the length of the tour and the sum of all penalties of vertices that are not visited. We present a polynomial-time approximation algorithm with an approximation guarantee slightly below 1.6, where the guarantee is with respect to the natural linear programming relaxation of the problem. This improves upon the previous best-known approximation ratio of 1.774. Our approach is based on a known decomposition for solutions of this linear relaxation into rooted trees. Our algorithm takes a tree from this decomposition and then performs a pruning step before doing parity correction on the remainder. Using a simple analysis, we bound the approximation guarantee of the proposed algorithm by$$(1+\sqrt{5})\big /2 \approx 1.618$$ ( 1 + 5 ) / 2 1.618 , the golden ratio. With some additional technical care we further improve the approximation guarantee to 1.599. Furthermore, we show that for the path version of Prize-Collecting TSP (known as Prize-Collecting Stroll) our approach yields an approximation guarantee of 1.6662, improving upon the previous best-known guarantee of 1.926. 
    more » « less