skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "N. Ratchatanantakit, N. O-larnnithipong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Masaaki Kurosu (Ed.)
    A new approach to correct the orientation estimate for a miniature Magnetic-Angular Rate-Gravity (MARG) module is statistically evaluated in a hand motion tracking system. Thirty human subjects performed an experiment to validate the performance of the proposed orientation correction algorithm in both non-magnetically distorted (MN) and magnetically distorted (MD) areas. The Kruskal-Wallis tests show that the orientation correction algorithm using Gravity and Magnetic Vectors with Double SLERP (GMV-D), the correction using Gravity and Magnetic Vectors with Single SLERP (GMV-S) and the on-board Kalman-Filter (KF) performed similarly in non-magnetically distorted areas. However, the statistical tests show that, when operating in the magnetically distorted region, the level of error in the orientation estimates produced by the three methods is significantly different, with the proposed GMV-D method yielding lower levels of error in the three Euler Angles Phi, Theta and Psi. This indicates that the GMV-D method was better able to provide orientation estimates that are more robust against local disturbances of the magnetic field that might exist in the operating space of the MARG module. 
    more » « less