skip to main content


Search for: All records

Creators/Authors contains: "Nabiyan, Mansureh-Sadat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dynamic models of structural and mechanical systems can be updated to match the measured data through a Bayesian inference process. However, the performance of classical (non-adaptive) Bayesian model updating approaches decreases significantly when the pre-assumed statistical characteristics of the model prediction error are violated. To overcome this issue, this paper presents an adaptive recursive variational Bayesian approach to estimate the statistical characteristics of the prediction error jointly with the unknown model parameters. This approach improves the accuracy and robustness of model updating by including the estimation of model prediction error. The performance of this approach is demonstrated using numerically simulated data obtained from a structural frame with material non-linearity under earthquake excitation. Results show that in the presence of non-stationary noise/error, the non-adaptive approach fails to estimate unknown model parameters, whereas the proposed approach can accurately estimate them. 
    more » « less
    Free, publicly-accessible full text available April 24, 2024