skip to main content

Search for: All records

Creators/Authors contains: "Naderiparizi, Saman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We design and prototype the first battery-free video streaming camera that harvests energy from both ambient light and RF signals. The RF signals are emitted by a nearby access point. The camera collects energy from both sources and backscatters up to 13 frames per second (fps) video at a distance of up to 150 ft in both outdoor and indoor environments. Compared to a single harvester powered by either ambient light or RF, our dual harvester design improves the camera's frame rate. Also, the dual harvester design maintains a steady 3 fps at distances beyond the RF energy harvesting range. To show efficacy of our battery-free video streaming camera for real applications such as surveillance and monitoring, we deploy our camera for a day-long experiment, from 8 AM to 4 PM, in an outdoor environment. Our results show that on a sunny day, our camera can provide a frame rate of up to 9 fps using a 4.5 cm×2.2 cm solar cell.
  2. Near-field communication (NFC) readers, ubiquitously embedded in smartphones and other infrastructures can wirelessly deliver mW-level power to NFC tags. Our previous work NFC-wireless identification and sensing platform (WISP) proves that the generated NFC signal from an NFC enabled phone can power a tag (NFC-WISP) with display and sensing capabilities in addition to identification. However, accurately aligning and placing the NFC tag's antenna to ensure the high power delivery efficiency and communication performance is very challenging for the users. In addition, the performance of the NFC tag is not only range and alignment sensitive but also is a function of its run-time load impedance. This makes the execution of power-hungry tasks on an NFC tag (like the NFC-WISP) very challenging. Therefore, we explore a low-cost tag antenna design to achieve higher power delivered to the load (PDL) by utilizing two different antenna configurations (2-coil/3-coil). The two types of antenna configurations can be used to dynamically adapt to the requirements of varied range, alignment and load impedance in real-time, therefore, we achieve continuous high PDL and reliable communication. With the proposed method, we can, for example, turn a semi-passive NFC-WISP into a passive display tag in which an embedded 2.7″ E-ink screenmore »can be updated robustly by a tapped NFC reader (e.g. an NFC-enable cell-phone) over a 3 seconds and within 1.5cm range.« less