skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nadimpally, Amruth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The development of next-generation energy storage systems relies on discovering new materials that support multivalent-ion transport. Transition metal oxides (TMOs) are promising due to their structural versatility, high ionic conductivity, and ability to accommodate multiple charge carriers. However, their vast compositional and structural diversity makes traditional exploration inefficient. This work presents a generative AI framework combining a crystal diffusion variational autoencoder (CDVAE) and a fine-tuned large language model (LLM) to discover porous oxide materials. Thousands of candidate structures are generated and screened for structural validity, thermodynamic stability, and electronic properties using a graph-based machine learning model and density functional theory (DFT) calculations. CDVAE identifies a broader variety of structures, including five novel TMO-based candidates, while LLM excels in generating highly stable structures near equilibrium. This approach demonstrates the power of generative AI in accelerating the discovery of advanced battery materials for multivalent-ion storage. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026