skip to main content


Search for: All records

Creators/Authors contains: "Nadler, Ethan_O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present Milky Way-est, a suite of 20 cosmological cold-dark-matter-only zoom-in simulations of Milky Way (MW)-like host halos. Milky Way-est hosts are selected such that they (i) are consistent with the MW’s measured halo mass and concentration, (ii) accrete a Large Magellanic Cloud (LMC)-like (≈1011M) subhalo within the last 2 Gyr on a realistic orbit, placing them near 50 kpc from the host center atz≈ 0, and (iii) undergo a >1:5 sub-to-host halo mass ratio merger with a Gaia–Sausage–Enceladus (GSE)-like system at early times (0.67 <z< 3). Hosts satisfying these LMC and GSE constraints constitute <1% of all halos in the MW’s mass range, and their total masses grow rapidly at late times due to LMC analog accretion. Compared to hosts of a similar final halo mass that are not selected to include LMC and GSE analogs, Milky Way-est hosts contain 22% more subhalos with present-day virial masses above 108Mthroughout the virial radius, on average. This enhancement reaches ≈80% in the inner 100 kpc and is largely, if not entirely, due to LMC-associated subhalos. These systems also induce spatial anisotropy in Milky Way-est subhalo populations, with ≈60% of the total subhalo population within 100 kpc found in the current direction of the LMC. Meanwhile, we find that GSE-associated subhalos do not significantly contribute to present-day Milky Way-est subhalo populations. These results provide context for our Galaxy’s dark matter structure and subhalo population and will help interpret a range of measurements that are currently only possible in the MW.

     
    more » « less
  2. Abstract

    The abundance of faint dwarf galaxies is determined by the underlying population of low-mass dark matter (DM) halos and the efficiency of galaxy formation in these systems. Here, we quantify potential galaxy formation and DM constraints from future dwarf satellite galaxy surveys. We generate satellite populations using a suite of Milky Way (MW)–mass cosmological zoom-in simulations and an empirical galaxy–halo connection model, and assess sensitivity to galaxy formation and DM signals when marginalizing over galaxy–halo connection uncertainties. We find that a survey of all satellites around one MW-mass host can constrain a galaxy formation cutoff at peak virial masses ofM50=108Mat the 1σlevel; however, a tail toward lowM50prevents a 2σmeasurement. In this scenario, combining hosts with differing bright satellite abundances significantly reduces uncertainties onM50at the 1σlevel, but the 2σtail toward lowM50persists. We project that observations of one (two) complete satellite populations can constrain warm DM models withmWDM≈ 10 keV (20 keV). Subhalo mass function (SHMF) suppression can be constrained to ≈70%, 60%, and 50% that in cold dark matter (CDM) at peak virial masses of 108, 109, and 1010M, respectively; SHMF enhancement constraints are weaker (≈20, 4, and 2 times that in CDM, respectively) due to galaxy–halo connection degeneracies. These results motivate searches for faint dwarf galaxies beyond the MW and indicate that ongoing missions like Euclid and upcoming facilities including the Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope will probe new galaxy formation and DM physics.

     
    more » « less
  3. ABSTRACT

    Modelling self-gravity of collisionless fluids (e.g. ensembles of dark matter, stars, black holes, dust, and planetary bodies) in simulations is challenging and requires some force softening. It is often desirable to allow softenings to evolve adaptively, in any high-dynamic range simulation, but this poses unique challenges of consistency, conservation, and accuracy, especially in multiphysics simulations where species with different ‘softening laws’ may interact. We therefore derive a generalized form of the energy-and-momentum conserving gravitational equations of motion, applicable to arbitrary rules used to determine the force softening, together with consistent associated time-step criteria, interaction terms between species with different softening laws, and arbitrary maximum/minimum softenings. We also derive new methods to maintain better accuracy and conservation when symmetrizing forces between particles. We review and extend previously discussed adaptive softening schemes based on the local neighbour particle density, and present several new schemes for scaling the softening with properties of the gravitational field, i.e. the potential or acceleration or tidal tensor. We show that the ‘tidal softening’ scheme not only represents a physically motivated, translation and Galilean invariant and equivalence-principle respecting (and therefore conservative) method but also imposes negligible time-step or other computational penalties, ensuring that pairwise two-body scattering is small compared to smooth background forces and can resolve outstanding challenges in properly capturing tidal disruption of substructures (minimizing artificial destruction) while also avoiding excessive N-body heating. We make all of this public in the GIZMO code.

     
    more » « less
  4. Abstract

    We introduce the DESI LOW-ZSecondary Target Survey, which combines the wide-area capabilities of the Dark Energy Spectroscopic Instrument (DESI) with an efficient, low-redshift target selection method. Our selection consists of a set of color and surface brightness cuts, combined with modern machine-learning methods, to target low-redshift dwarf galaxies (z< 0.03) between 19 <r< 21 with high completeness. We employ a convolutional neural network (CNN) to select high-priority targets. The LOW-Zsurvey has already obtained over 22,000 redshifts of dwarf galaxies (M*< 109M), comparable to the number of dwarf galaxies discovered in the Sloan Digital Sky Survey DR8 and GAMA. As a spare fiber survey, LOW-Zcurrently receives fiber allocation for just ∼50% of its targets. However, we estimate that our selection is highly complete: for galaxies atz< 0.03 within our magnitude limits, we achieve better than 95% completeness with ∼1% efficiency using catalog-level photometric cuts. We also demonstrate that our CNN selectionsz< 0.03 galaxies from the photometric cuts subsample at least 10 times more efficiently while maintaining high completeness. The full 5 yr DESI program will expand the LOW-Zsample, densely mapping the low-redshift Universe, providing an unprecedented sample of dwarf galaxies, and providing critical information about how to pursue effective and efficient low-redshift surveys.

     
    more » « less