skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nagalla, Karna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this work, we examine the effects of spatial dephasing of coherences on the transmission and reflection probabilities for electrons with energyEincident to a one-dimensional rectangular barrier of heightV0. Statistical models are presented where the coherence between different scattering pathways or ‘Feynman paths’ undergo dephasing over a length scale,Lϕ. For incident waves withE>V0, three different dephasing models that attenuate the contributions of spatial coherence to the transmission and reflection probabilities while preserving unitarity (i.e., conserving charge) were investigated. In the tunneling regime (incident waves withE<V0), however, preserving unitarity requiresLϕ→ ∞ , suggesting that elastic tunneling through a rectangular barrier is 100% spatially coherent for these dephasing models. However, wave absorption models are shown to preserve unitarity in the tunneling regime, which is not the case for scattering above the barrier. 
    more » « less