skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Naghavi_Khanghah, Kiarash"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Designing 3D porous metamaterial units while ensuring complete connectivity of both solid and pore phases presents a significant challenge. This complete connectivity is crucial for manufacturability and structure-fluid interaction applications (e.g., fluid-filled lattices). In this study, we propose a generative graph neural network-based framework for designing the porous metamaterial units with the constraint of complete connectivity. First, we propose a graph-based metamaterial unit generation approach to generate porous metamaterial samples with complete connectivity in both solid and pore phases. Second, we establish and evaluate three distinct variational graph autoencoder (VGAE)-based generative models to assess their effectiveness in generating an accurate latent space representation of metamaterial structures. By choosing the model with the highest reconstruction accuracy, the property-driven design search is conducted to obtain novel metamaterial unit designs with the targeted properties. A case study on designing liquid-filled metamaterials for thermal conductivity properties is carried out. The effectiveness of the proposed graph neural network-based design framework is evaluated by comparing the performances of the obtained designs with those of known designs in the metamaterial database. Merits and shortcomings of the proposed framework are also discussed.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract

    In this paper, we propose and compare two novel deep generative model-based approaches for the design representation, reconstruction, and generation of porous metamaterials characterized by complex and fully connected solid and pore networks. A highly diverse porous metamaterial database is curated, with each sample represented by solid and pore phase graphs and a voxel image. All metamaterial samples adhere to the requirement of complete connectivity in both pore and solid phases. The first approach employs a Dual Decoder Variational Graph Autoencoder to generate both solid phase and pore phase graphs. The second approach employs a Variational Graph Autoencoder for reconstructing/generating the nodes in the solid phase and pore phase graphs and a Transformer-based Large Language Model (LLM) for reconstructing/generating the connections, i.e., the edges among the nodes. A comparative study is conducted, and we found that both approaches achieved high accuracy in reconstructing node features, while the LLM exhibited superior performance in reconstructing edge features. Reconstruction accuracy is also validated by voxel-to-voxel comparison between the reconstructions and the original images in the test set. Additionally, discussions on the advantages and limitations of using LLMs in metamaterial design generation, along with the rationale behind their utilization, are provided.

     
    more » « less
    Free, publicly-accessible full text available July 31, 2025
  3. Abstract

    Bridging the gaps among various categories of stochastic microstructures remains a challenge in the design representation of microstructural materials. Each microstructure category requires certain unique mathematical and statistical methods to define the design space (design representation). The design representation methods are usually incompatible between two different categories of stochastic microstructures. The common practice of pre-selecting the microstructure category and the associated design representation method before conducting rigorous computational design limits the design freedom and reduces the possibility of obtaining innovative microstructure designs. To overcome this issue, this paper proposes and compares two methods, the deep generative modeling-based method and the curvature functional-based method, to understand their pros and cons in designing mixed-category stochastic microstructures for desired properties. For the deep generative modeling-based method, the Variational Autoencoder is employed to generate an unstructured latent space as the design space. For the curvature functional-based method, the microstructure geometry is represented by curvature functionals, of which the functional parameters are employed as the microstructure design variables. Regressors of the microstructure design variables-property relationship are trained for microstructure design optimization. A comparative study is conducted to understand the relative merits of these two methods in terms of computational cost, continuous transition, design scalability, design diversity, dimensionality of the design space, interpretability of the statistical equivalency, and design performance.

     
    more » « less