Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We study the structure of the solution sets in universal differential fields of certain differential equations of order two, the Poizat equations, which are particular cases of Liénard equations. We give a necessary and sufficient condition for strong minimality for equations in this class and a complete classification of the algebraic relations for solutions of strongly minimal Poizat equations. We also give an analysis of the non-strongly minimal cases as well as applications concerning the Liouvillian and Pfaffian solutions of some Liénard equations.more » « less
-
null (Ed.)We prove the Ax-Lindemann-Weierstrass theorem with derivatives for the uniformizing functions of genus zero Fuchsian groups of the first kind. Our proof relies on differential Galois theory, monodromy of linear differential equations, the study of algebraic and Liouvillian solutions, differential algebraic work of Nishioka towards the Painlevé irreducibility of certain Schwarzian equations, and considerable machinery from the model theory of differentially closed fields. Our techniques allow for certain generalizations of the Ax-Lindemann-Weierstrass theorem that have interesting consequences. In particular, we apply our results to give a complete proof of an assertion of Painlevé (1895). We also answer certain cases of the André-Pink conjecture, namely, in the case of orbits of commensurators of Fuchsian groups.more » « less