skip to main content

Search for: All records

Creators/Authors contains: "Nahar, Nadia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Incorporating machine learning (ML) components into software products raises new software-engineering challenges and exacerbates existing ones. Many researchers have invested significant effort in understanding the challenges of industry practitioners working on building products with ML components, through interviews and surveys with practitioners. With the intention to aggregate and present their collective findings, we conduct a meta-summary study: We collect 50 relevant papers that together interacted with over 4758 practitioners using guidelines for systematic literature reviews. We then collected, grouped, and organized the over 500 mentions of challenges within those papers. We highlight the most commonly reported challenges and hope this meta-summary will be a useful resource for the research community to prioritize research and education in this field. 
    more » « less
  2. The documentation practice for machine-learned (ML) models often falls short of established practices for traditional software, which impedes model accountability and inadvertently abets inappropriate or misuse of models. Recently, model cards, a proposal for model documentation, have attracted notable attention, but their impact on the actual practice is unclear. In this work, we systematically study the model documentation in the field and investigate how to encourage more responsible and accountable documentation practice. Our analysis of publicly available model cards reveals a substantial gap between the proposal and the practice. We then design a tool named DocML aiming to (1) nudge the data scientists to comply with the model cards proposal during the model development, especially the sections related to ethics, and (2) assess and manage the documentation quality. A lab study reveals the benefit of our tool towards long-term documentation quality and accountability. 
    more » « less
  3. The introduction of machine learning (ML) components in software projects has created the need for software engineers to collaborate with data scientists and other specialists. While collaboration can always be challenging, ML introduces additional challenges with its exploratory model development process, additional skills and knowledge needed, difficulties testing ML systems, need for continuous evolution and monitoring, and non-traditional quality requirements such as fairness and explainability. Through interviews with 45 practitioners from 28 organizations, we identified key collaboration challenges that teams face when building and deploying ML systems into production. We report on common collaboration points in the development of production ML systems for requirements, data, and integration, as well as corresponding team patterns and challenges. We find that most of these challenges center around communication, documentation, engineering, and process, and collect recommendations to address these challenges. 
    more » « less