skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nair, Aruna N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Abstract A new isolation protocol was recently reported for highly purified metallic FullertubesD5h‐C90,D3d‐C96, andD5d‐C100,which exhibit unique electronic features. Here, we report the oxygen reduction electrocatalytic behavior of C60, C70(spheroidal fullerenes), and C90, C96, and C100(tubular fullerenes) using a combination of experimental and theoretical approaches. C96(a metal‐free catalyst) displayed remarkable oxygen reduction reaction (ORR) activity, with an onset potential of 0.85 V and a halfway potential of 0.75 V, which are close to the state‐of‐the‐art Pt/C benchmark catalyst values. We achieved an excellent power density of 0.75 W cm−2using C96as a modified cathode in a proton‐exchange membrane fuel cell, comparable to other recently reported efficient metal‐free catalysts. Combined band structure (experimentally calculated) and free‐energy (DFT) investigations show that both favorable energy‐level alignment active catalytic sites on the carbon cage are responsible for the superior activity of C96
    more » « less