Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We search for the rare decay in a sample of electron-positron collisions at the resonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanying meson in events to suppress background from other decays of the signal candidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanying meson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for the branching fraction of and , respectively. Combining the results, we determine the branching fraction of the decay to be , providing the first evidence for this decay at 3.5 standard deviations. The combined result is 2.7 standard deviations above the standard model expectation. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available June 1, 2025
-
We report a measurement of decay-time-dependent charge-parity ( ) asymmetries in decays. We use pairs collected at the resonance with the Belle II detector at the SuperKEKB asymmetric-energy electron-positron collider. We reconstruct 220 signal events and extract the -violating parameters and from a fit to the distribution of the decay-time difference between the two mesons. The resulting confidence region is consistent with previous measurements in and decays and with predictions based on the standard model. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available June 1, 2025