We report sub-parsec-scale observations of the 321 GHz H2O emission line in the radio galaxy NGC 1052. The H2O line emitter size is constrained in <0.6 mas distributed on the continuum core component. The brightness temperature exceeding 106 K and the intensity variation indicate certain evidence for maser emission. The maser spectrum consists of redshifted and blueshifted velocity components spanning ∼400 km s−1, separated by a local minimum around the systemic velocity of the galaxy. The spatial distribution of maser components shows a velocity gradient along the jet direction, implying that the population-inverted gas is driven by the jets interacting with the molecular torus. We identified a significant change of the maser spectra between two sessions separated by 14 days. The maser profile showed a radial velocity drift of 127 ± 13 km s−1 yr−1 implying inward gravitational acceleration at 5000 Schwarzschild radii. The results demonstrate the feasibility of future very long baseline interferometry observations to resolve the jet–torus interacting region.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract The Atacama Large Millimeter/submillimeter Array (ALMA) serendipitously detected H2O $J_{K_{\rm a}, K_{\rm c}} = 10_{2,9}$–93, 6 emission at 321 GHz in NGC 1052. This is the first submillimeter maser detection in a radio galaxy and the most luminous 321 GHz H2O maser known to-date with the isotropic luminosity of $1090\, L_{\odot }$. The line profile consists of a broad velocity component with FWHM = 208 ± 12 km s−1 straddling the systemic velocity and a narrow component with FWHM = 44 ± 3 km s−1 blueshifted by 160 km s−1. The profile is significantly different from the known 22 GHz 61, 6–52, 3 maser which shows a broad profile redshifted by 193 km s−1. The submillimeter maser is spatially unresolved with a synthesized beam of ${0{^{\prime \prime}_{.}}68} \times {0{^{\prime \prime}_{.}}56}$ and coincides with the continuum core position within 12 pc. These results indicate amplification of the continuum emission through high-temperature (>1000 K) and dense [n(H2O) > 104 cm−3] molecular gas in front of the core.
-
Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) imaging of molecular gas across the full star-forming disk of the barred spiral galaxy M83 in CO( J = 1–0). We jointly deconvolve the data from ALMA’s 12 m, 7 m, and Total Power arrays using the MIRIAD package. The data have a mass sensitivity and resolution of 10 4 M ⊙ (3 σ ) and 40 pc—sufficient to detect and resolve a typical molecular cloud in the Milky Way with a mass and diameter of 4 × 10 5 M ⊙ and 40 pc, respectively. The full disk coverage shows that the characteristics of molecular gas change radially from the center to outer disk, with the locally measured brightness temperature, velocity dispersion, and integrated intensity (surface density) decreasing outward. The molecular gas distribution shows coherent large-scale structures in the inner part, including the central concentration, offset ridges along the bar, and prominent molecular spiral arms. However, while the arms are still present in the outer disk, they appear less spatially coherent, and even flocculent. Massive filamentary gas concentrations are abundant even in the interarm regions. Building up these structures in the interarm regions would require a very long time (≳100 Myr). Instead, they must have formed within stellar spiral arms and been released into the interarm regions. For such structures to survive through the dynamical processes, the lifetimes of these structures and their constituent molecules and molecular clouds must be long (≳100 Myr). These interarm structures host little or no star formation traced by H α . The new map also shows extended CO emission, which likely represents an ensemble of unresolved molecular clouds.more » « less
-
Abstract We report the detection of an ionized gas outflow from an X-ray active galactic nucleus hosted in a massive quiescent galaxy in a protocluster at z = 3.09 (J221737.29+001823.4). It is a type-2 QSO with broad ( W 80 > 1000 km s −1 ) and strong ( log ( L [ OIII ] /erg s −1 ) ≈ 43.4) [O iii ] λ λ 4959,5007 emission lines detected by slit spectroscopy in three-position angles using Multi-Object Infra-Red Camera and Spectrograph (MOIRCS) on the Subaru telescope and the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) on the Keck-I telescope. In the all slit directions, [O iii ] emission is extended to ∼15 physical kpc and indicates a powerful outflow spreading over the host galaxy. The inferred ionized gas mass outflow rate is 22 ± 3 M ⊙ yr −1 . Although it is a radio source, according to the line diagnostics using H β , [O ii ], and [O iii ], photoionization by the central QSO is likely the dominant ionization mechanism rather than shocks caused by radio jets. On the other hand, the spectral energy distribution of the host galaxy is well characterized as a quiescent galaxy that has shut down star formation several hundred Myr ago. Our results suggest a scenario that QSOs are powered after the shutdown of the star formation and help complete the quenching of massive quiescent galaxies at high redshift.more » « less
-
Abstract We present observations of [N ii] 205 μm, [O iii] 88 μm, and dust emission in a strongly-lensed, submillimeter galaxy (SMG) at z = 6.0, G09.83808, with the Atacama Large Millimeter/submillimeter Array (ALMA). Both [N ii] and [O iii] line emissions are detected at >12σ in the ${0{^{\prime \prime}_{.}}8}$-resolution maps. Lens modeling indicates that the spatial distribution of the dust continuum emission is well characterized by a compact disk with an effective radius of 0.64 ± 0.02 kpc and a high infrared surface brightness of ΣIR = (1.8 ± 0.3) × 1012 L⊙ kpc−2. This result supports that G09.83808 is the progenitor of compact quiescent galaxies at z ∼ 4, where the majority of its stars are expected to be formed through a strong and short burst of star formation. G09.83808 and other lensed SMGs show a decreasing trend in the [N ii] line to infrared luminosity ratio with increasing continuum flux density ratio between 63 and 158 μm, as seen in local luminous infrared galaxies (LIRGs). The decreasing trend can be reproduced by photoionization models with increasing ionization parameters. Furthermore, by combining the [N ii]/[O iii] luminosity ratio with far-infrared continuum flux density ratio in G09.83808, we infer that the gas phase metallicity is already Z ≈ 0.5–0.7 Z⊙. G09.83808 is likely one of the earliest galaxies that has been chemically enriched at the end of reionization.
-
Abstract We report a massive quiescent galaxy at z spec = 3.0922 − 0.004 + 0.008 spectroscopically confirmed at a protocluster in the SSA22 field by detecting the Balmer and Ca ii absorption features with the multi-object spectrometer for infrared exploration on the Keck I telescope. This is the most distant quiescent galaxy confirmed in a protocluster to date. We fit the optical to mid-infrared photometry and spectrum simultaneously with spectral energy distribution (SED) models of parametric and nonparametric star formation histories (SFHs). Both models fit the observed SED well and confirm that this object is a massive quiescent galaxy with a stellar mass of log ( M ⋆ / M ⊙ ) = 11.26 − 0.04 + 0.03 and 11.54 − 0.00 + 0.03 , and a star formation rate of SFR/ M ⊙ yr −1 < 0.3 and = 0.01 − 0.01 + 0.03 for parametric and nonparametric models, respectively. The SFH from the former modeling is described as an instantaneous starburst whereas that of the latter modeling is longer-lived, but both models agree with a sudden quenching of the star formation at ∼0.6 Gyr ago. This massive quiescent galaxy is confirmed in an extremely dense group of galaxies predicted as a progenitor of a brightest cluster galaxy formed via multiple mergers in cosmological numerical simulations. We discover three new plausible [O iii ] λ 5007 emitters at 3.0791 ≤ z spec ≤ 3.0833 serendipitously detected around the target. Two of them just between the target and its nearest massive galaxy are possible evidence of their interactions. They suggest the future great size and stellar mass evolution of this massive quiescent galaxy via mergers.more » « less
-
Abstract We characterize the accuracy of linear-polarization mosaics made using the Atacama Large Millimeter/submillimeter Array (ALMA). First, we observed the bright, highly linearly polarized blazar 3C 279 at Bands 3, 5, 6, and 7 (3 mm, 1.6 mm, 1.3 mm, and 0.87 mm, respectively). At each band, we measured the blazar’s polarization on an 11 × 11 grid of evenly spaced offset pointings covering the full-width at half-maximum (FWHM) area of the primary beam. After applying calibration solutions derived from the on-axis pointing of 3C 279 to all of the on- and off-axis data, we find that the residual polarization errors across the primary beam are similar at all frequencies: the residual errors in linear polarization fraction
P fracand polarization position angleχ are ≲0.001 (≲0.1% of StokesI ) and ≲ 1° near the center of the primary beam; the errors increase to ∼0.003–0.005 (∼0.3%–0.5% of StokesI ) and ∼1°–5° near the FWHM as a result of the asymmetric beam patterns in the (linearly polarized)Q andU maps. We see the expected double-lobed “beam squint” pattern in the circular polarization (StokesV ) maps. Second, to test the polarization accuracy in a typical ALMA project, we performed observations of continuum linear polarization toward the Kleinmann–Low nebula in Orion (Orion-KL) using several mosaic patterns at Bands 3 and 6. We show that after mosaicking, the residual off-axis errors decrease as a result of overlapping multiple pointings. Finally, we compare the ALMA mosaics with an archival 1.3 mm Combined Array for Research in Millimeter-wave Astronomy polarization mosaic of Orion-KL and find good consistency in the polarization patterns. -
Abstract We present ALMA [C ii] line and far-infrared (FIR) continuum observations of three $z \gt 6$ low-luminosity quasars ($M_{\rm 1450} \gt -25$ mag) discovered by our Subaru Hyper Suprime-Cam (HSC) survey. The [C ii] line was detected in all three targets with luminosities of $(2.4\mbox{--}9.5) \times 10^8\, L_{\odot }$, about one order of magnitude smaller than optically luminous ($M_{\rm 1450} \lesssim -25$ mag) quasars. The FIR continuum luminosities range from $\lt 9 \times 10^{10}\, L_{\odot }$ (3 $\sigma$ limit) to ${\sim } 2 \times 10^{12}\, L_{\odot }$, indicating a wide range in star formation rates in these galaxies. Most of the HSC quasars studied thus far show [C ii]/ FIR luminosity ratios similar to local star-forming galaxies. Using the [C ii]-based dynamical mass ($M_{\rm dyn}$) as a surrogate for bulge stellar mass ($M_{\rm\, bulge}$), we find that a significant fraction of low-luminosity quasars are located on or even below the local $M_{\rm\, BH}$–$M_{\rm\, bulge}$ relation, particularly at the massive end of the galaxy mass distribution. In contrast, previous studies of optically luminous quasars have found that black holes are overmassive relative to the local relation. Given the low luminosities of our targets, we are exploring the nature of the early co-evolution of supermassive black holes and their hosts in a less biased way. Almost all of the quasars presented in this work are growing their black hole mass at a much higher pace at $z \sim 6$ than the parallel growth model, in which supermassive black holes and their hosts grow simultaneously to match the local $M_{\rm\, BH}$–$M_{\rm\, bulge}$ relation at all redshifts. As the low-luminosity quasars appear to realize the local co-evolutionary relation even at $z \sim 6$, they should have experienced vigorous starbursts prior to the currently observed quasar phase to catch up with the relation.