The Acyl-activating enzyme (AAE) 3 gene encodes an oxalyl-CoA synthetase that catalyzes the conversion of oxalate to oxalyl-CoA as the first step in the CoA-dependent pathway of oxalate catabolism. Although the role of this enzyme in oxalate catabolism has been established, its biological roles in plant growth and development are less understood. As a step toward gaining a better understanding of these biological roles, we report here a characterization of the Arabidopsis thaliana aae3 (Ataae3) seed mucilage phenotype. Ruthidium red (RR) staining of Ataae3 and wild type (WT) seeds suggested that the observed reduction in Ataae3 germination may be attributable, at least in part, to a decrease in seed mucilage accumulation. Quantitative RT-PCR analysis revealed that the expression of selected mucilage regulatory transcription factors, as well as of biosynthetic and extrusion genes, was significantly down-regulated in the Ataae3 seeds. Mucilage accumulation in seeds from an engineered oxalate-accumulating Arabidopsis and Atoxc mutant, blocked in the second step of the CoA-dependent pathway of oxalate catabolism, were found to be similar to WT. These findings suggest that elevated tissue oxalate concentrations and loss of the oxalate catabolism pathway downstream of AAE3 were not responsible for the reduced Ataae3 seed germination and mucilage phenotypes. Overall, our findings unveil the presence of regulatory interplay between AAE3 and transcriptional control of mucilage gene expression.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00000030000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Cheng, Ninghui (3)
-
Nakata, Paul A. (3)
-
Bai, Guihua (1)
-
Bergkamp, Blake (1)
-
Braun, Edward (1)
-
Graham, Michelle A. (1)
-
Hao, Yangfan (1)
-
Hirschi, Kendal D. (1)
-
Hu, Ying (1)
-
Jackson, David P. (1)
-
Jagadish, SV Krishna (1)
-
Jiang, Xu-Xu (1)
-
Kakeshpour, Tayebeh (1)
-
Li, Sen (1)
-
Li, Zhen-Chao (1)
-
Liu, Jianzhong (1)
-
Liu, Sanzhen (1)
-
Mei, Yu (1)
-
Navarre, Duroy A. (1)
-
Oliveira Garcia, Ely (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2025
-
Xu, Hui-Yang ; Zhang, Chi ; Li, Zhen-Chao ; Wang, Zhi-Rong ; Jiang, Xu-Xu ; Shi, Yafei ; Braun, Edward ; Mei, Yu ; Qiu, Wen-Li ; Li, Sen ; et al ( , Plant Physiology)
-
Sprague, Stuart A. ; Tamang, Tej Man ; Steiner, Trevor ; Wu, Qingyu ; Hu, Ying ; Kakeshpour, Tayebeh ; Park, Jungeun ; Yang, Jian ; Peng, Zhao ; Bergkamp, Blake ; et al ( , Plant Biotechnology Journal)
Summary Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 from
Arabidopsis thaliana (AtGRXS17 ) can provide thermotolerance in maize through enhanced chaperone activity and modulation of heat stress‐associated gene expression. The thermotolerant maize lines had increased protection against protein damage and yielded a sixfold increase in grain production in comparison to the non‐transgenic counterparts under heat stress field conditions. The maize lines also displayed thermotolerance in the reproductive stages, resulting in improved pollen germination and the higher fidelity of fertilized ovules under heat stress conditions. Our results present a robust and simple strategy for meeting rising yield demands in maize and, possibly, other crop species in a warming global environment.