- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Brune, Sascha (1)
-
Conrad, Clinton P. (1)
-
Cowgill, Eric (1)
-
Glerum, Anne (1)
-
Heister, Timo (1)
-
Naliboff, John B (1)
-
Naliboff, John B. (1)
-
Reusen, Jesse M. (1)
-
Steffen, Rebekka (1)
-
Vasey, Dylan A (1)
-
Weerdesteijn, Maaike F. M. (1)
-
Zhang, Jiaqi (1)
-
Zwaan, Frank (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Although many collisional orogens form after subduction of oceanic lithosphere between two continents, some orogens result from strain localization within a continent via inversion of structures inherited from continental rifting. Intracontinental rift-inversion orogens exhibit a range of structural styles, but the underlying causes of such variability have not been extensively explored. We use numerical models of intracontinental rift inversion to investigate the impact of parameters including rift structure, rift duration, post-rift cooling, and convergence velocity on orogen structure. Our models reproduce the natural variability of rift-inversion orogens and can be categorized using three endmember styles: asymmetric underthrusting (AU), distributed thickening (DT), and localized polarity flip (PF). Inversion of narrow rifts tends to produce orogens with more localized deformation (styles AU and PF) than those resulting from wide rifts. However, multiple combinations of the parameters we investigated can produce the same structural style. Thus, our models indicate no unique relationship between orogenic structure and the conditions prior to and during inversion. Because the style of rift-inversion orogenesis is highly contingent upon the rift history prior to inversion, knowing the geologic history that preceded rift inversion is essential for translating orogenic structure into the processes that produced that structure.more » « less
-
Weerdesteijn, Maaike F. M.; Naliboff, John B.; Conrad, Clinton P.; Reusen, Jesse M.; Steffen, Rebekka; Heister, Timo; Zhang, Jiaqi (, Geochemistry, Geophysics, Geosystems)Abstract The redistribution of past and present ice and ocean loading on Earth's surface causes solid Earth deformation and geoid changes, known as glacial isostatic adjustment. The deformation is controlled by elastic and viscous material parameters, which are inhomogeneous in the Earth. We present a new viscoelastic solid Earth deformation model in ASPECT (Advanced Solver for Problems in Earth's ConvecTion): a modern, massively parallel, open‐source finite element code originally designed to simulate convection in the Earth's mantle. We show the performance of solid Earth deformation in ASPECT and compare solutions to TABOO, a semianalytical code, and Abaqus, a commercial finite element code. The maximum deformation and deformation rates using ASPECT agree within 2.6% for the average percentage difference with TABOO and Abaqus on glacial cycle (∼100 kyr) and contemporary ice melt (∼100 years) timescales. This gives confidence in the performance of our new solid Earth deformation model. We also demonstrate the computational efficiency of using adaptively refined meshes, which is a great advantage for solid Earth deformation modeling. Furthermore, we demonstrate the model performance in the presence of lateral viscosity variations in the upper mantle and report on parallel scalability of the code. This benchmarked code can now be used to investigate regional solid Earth deformation rates from ice age and contemporary ice melt. This is especially interesting for low‐viscosity regions in the upper mantle beneath Antarctica and Greenland, where it is not fully understood how ice age and contemporary ice melting contribute to geodetic measurements of solid Earth deformation.more » « less
An official website of the United States government
