skip to main content


Search for: All records

Creators/Authors contains: "Nanda, Kaushik D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the two‐photon absorption (2PA) spectrum of aqueous thiocyanate calculated using high‐level quantum‐chemistry methods. The 2PA spectrum is compared to the one‐photon absorption (1PA) spectrum computed using the same computational protocol. Although the two spectra probe the same set of electronic states, the intensity patterns are different, leading to an apparent red‐shift of the 2PA spectrum relative to the 1PA spectrum. The presented analysis explains the intensity patterns and attributes the differences between the 1PA and 2PA spectra to the native symmetry of isolated SCN, which influences the spectra in the low‐symmetry solvated environment. The native symmetry also manifests itself in variations of the polarization ratio (e.g., parallel vs. perpendicular cross sections) across the spectrum. The presented results highlight the potential of 2PA spectroscopy and high‐level quantum‐chemistry methods in studies of condensed‐phase phenomena.

     
    more » « less
    Free, publicly-accessible full text available May 5, 2025
  2. The equation-of-motion coupled-cluster singles and doubles method with double electron attachment (EOM-DEA-CCSD) is capable of computing reliable energies, wave functions, and first-order properties of excited states in diradicals and polyenes that have a significant doubly excited character with respect to the ground state, without the need for including the computationally expensive triple excitations. Here, we extend the capabilities of the EOM-DEA-CCSD method to the calculations of a multiphoton property, two-photon absorption (2PA) cross sections. Closed-form expressions for the 2PA cross sections are derived within the expectation-value approach using response wave functions. We analyze the performance of this new implementation by comparing the EOM-DEA-CCSD energies and 2PA cross sections with those computed using the CC3 quadratic response theory approach. As benchmark systems, we consider transitions to the states with doubly excited character in twisted ethene and in polyenes, for which EOM-EE-CCSD (EOM-CCSD for excitation energies) performs poorly. The EOM-DEA-CCSD 2PA cross sections are comparable with the CC3 results for twisted ethene; however, the discrepancies between the two methods are large for hexatriene. The observed trends are explained by configurational analysis of the 2PA channels. 
    more » « less
  3. This computational study characterises charge-transfer-to-solvent (CTTS) states of aqueous thiocyanate anion using equation-of-motion coupled-cluster methods combined with electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) scheme. Equilibrium sampling was carried out using classical molecular dynamics (MD) with standard force-fields and QM/MM ab initio molecular dynamics (AIMD) using density functional theory. The two calculations yield significantly different local structure around solvated SCN− . Because of the diffuse character of CTTS states, they are very sensitive to the local structure of solvent around the solute and its dynamic fluctuations. Owing to this sensitivity, the spectra computed using MD and AIMD based snapshots differ considerably. This sensitivity suggests that the spectroscopy exploiting CTTS transitions can provide an experimental handle for assessing the quality of force-fields and density functionals. By combining CTTS-based spectroscopies with reliable theoretical modeling, detailed microscopic information of the solvent structure can be obtained. We present a robust computational protocol for modeling spectra of solvated anions and emphasise the use of an ab initio characterization of individual electronic transitions as CTTS or local excitations. 
    more » « less
  4. We present a novel approach for computing resonant inelastic X-ray scattering (RIXS) cross sections within the equation-of-motion coupled-cluster (EOM-CC) framework. The approach is based on recasting the sum-over-states expressions for RIXS moments into closed-form expressions by using damped response theory. Damped response formalism allows one to circumvent problems of divergent behavior of response equations in the resonant regime. However, the convergence of response equations in the X-ray frequency range is often erratic due to the electronically metastable ( i.e. , resonant) nature of the virtual core-excited states embedded in the valence ionization continuum. We circumvent this problematic behavior by extending the core–valence separation (CVS) scheme, which decouples the valence-excited and core-excited configurations of the excitation manifold, into the response domain. The accuracy of the CVS-enabled damped response theory, implemented within the EOM-EE-CCSD (EOM-CC for excitation energies with single and double excitations) framework, is assessed by comparison against standard damped EOM-EE-CCSD response calculations. The capabilities of the new approach are illustrated by calculations of RIXS cross sections for benzene and benzene radical cation. 
    more » « less