skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nandy, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider effects of spatial dispersion in noncentrosymmetric time-reversal invariant Weyl metals in the presence of a static magnetic field. In particular, we study currents that are linear in both the spatial derivatives of an applied electric field and the static magnetic field, which are responsible for the phenomenon of gyrotropic birefringence. We show that the chiral anomaly and the chiral magnetic effect make the leading contribution to this class of phenomena in metals. We apply the obtained results to the problem of electromagnetic wave transmission through a thin slab of a Weyl semimetal and show that the transmission coefficient contains a component that is odd in the applied static magnetic field. As such, it can be easily distinguished from conventional Ohmic magnetotransport effects, which are quadratic in the applied magnetic field. The relative magnitude of the effect can reach a few percent in Weyl materials subject to magnetic fields of 0.1 T, while the effect is several orders of magnitude smaller in metals without Berry monopoles. We conclude that the nonreciprocal optical and magnetotransport effects can be a robust probe of band topology in metals. 
    more » « less
  2. null (Ed.)