skip to main content

Search for: All records

Creators/Authors contains: "Nanni, Antonio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Free, publicly-accessible full text available August 1, 2024
  3. Free, publicly-accessible full text available September 1, 2024
  4. This paper reports on a combined experimental and numerical modeling investigation of cracking of concrete slabs with GFRP reinforcement. At this stage of the project, attention is given to early-age cracking driven by plastic shrinkage, preceding longer term considerations of cracking resistance over the service life of field applications. Of interest is the effectiveness of GFRP reinforcement in restricting plastic shrinkage cracking. Nine small-scale slab specimens were subjected to controlled evaporation rates. Images of crack development were acquired periodically, from which crack width estimations were made. Comparisons were made between slabs reinforced with conventional steel and those reinforced with GFRP, along with control specimens lacking reinforcement. During the period of plastic shrinkage, the time of crack initiation and subsequent crack openings do not appear to be influenced by the presence of the reinforcing bars. To understand this behavior, six early-age bond tests were conducted for both types of the bars after 1, 2, and 3 h exposure to the controlled evaporation rate. In addition, concrete strength development and time of settings were measured using penetration resistance tests on a representative mortar. The numerical modeling component of this research is based on a Voronoi cell lattice model; in this approach, the relative humidity, temperature, and displacement fields are discretized in three-dimensions, allowing for a comprehensive investigation of material behavior within the controlled environment. Based on the measured bond properties, our simulations confirm that the reinforcing bars restrict crack development, though they do not prevent it entirely. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  5. This article highlights the absence of published paradigms hybridized by The Cuckoo Search (CS) and Stochastic Paint Optimizer (SPO) for optimizing truss structures using composite materials under natural frequency constraints. The article proposes a novel optimization algorithm called CSSPO for optimizing truss structures made of composite materials, known as fiber-reinforced polymer (FRP) composites, to address this gap. Optimization problems of truss structures under frequency constraints are recognized as challenging due to their non-linear and non-convex search spaces that contain numerous local optima. The proposed methodology produces high-quality optimal solutions with less computational effort than the original methods. The aim of this work is to compare the performance of carbon FRP (CFRP), glass FRP (GFRP), and steel using a novel hybrid algorithm to provide valuable insights and inform decision-making processes in material selection and design. Four benchmark structure trusses with natural frequency constraints were utilized to demonstrate the efficiency and robustness of the CSSPO. The numerical analysis findings indicate that the CSSPO outperforms the classical SPO and exhibits comparable or superior performance when compared to the SPO. The study highlights that implementing CFRP and GFRP composites in truss construction leads to a notable reduction in weight compared to using steel. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  6. null (Ed.)
    Abstract Within the last century, coastal structures for infrastructure applications have traditionally been constructed with timber, structural steel, and/or steel-reinforced/prestressed concrete. Given asset owners’ desires for increased service-life; reduced maintenance, repair and rehabilitation; liability; resilience; and sustainability, it has become clear that traditional construction materials cannot reliably meet these challenges without periodic and costly intervention. Fiber-Reinforced Polymer (FRP) composites have been successfully utilized for durable bridge applications for several decades, demonstrating their ability to provide reduced maintenance costs, extend service life, and significantly increase design durability. This paper explores a representative sample of these applications, related specifically to internal reinforcement for concrete structures in both passive (RC) and pre-tensioned (PC) applications, and contrasts them with the time-dependent effect and cost of corrosion in transportation infrastructure. Recent development of authoritative design guidelines within the US and international engineering communities is summarized and a examples of RC/PC verses FRP-RC/PC presented to show the sustainable (economic and environmental) advantage of composite structures in the coastal environment. 
    more » « less