skip to main content


Search for: All records

Creators/Authors contains: "Narang, Prineha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 4, 2024
  2. Abstract The maximum amount of entanglement achievable under passive transformations by continuous-variable states is called the entanglement potential. Recent work has demonstrated that the entanglement potential is upper-bounded by a simple function of the squeezing of formation, and that certain classes of two-mode Gaussian states can indeed saturate this bound, though saturability in the general case remains an open problem. In this study, we introduce a larger class of states that we prove saturates the bound, and we conjecture that all two-mode Gaussian states can be passively transformed into this class, meaning that for all two-mode Gaussian states, entanglement potential is equivalent to squeezing of formation. We provide an explicit algorithm for the passive transformations and perform extensive numerical testing of our claim, which seeks to unite the resource theories of two characteristic quantum properties of continuous-variable systems. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Free, publicly-accessible full text available May 22, 2025
  4. Abstract The collective mode spectrum of a symmetry-breaking state, such as a superconductor, provides crucial insight into the nature of the order parameter. In this work, we study two collective modes which are unique to unconventional superconductors that spontaneously break time reversal symmetry. We show that these modes are coherent and underdamped for a wide variety of time-reversal symmetry breaking superconducting states. By further demonstrating that these modes can be detected using a number of existing experimental techniques, we propose that our work can be leveraged as a form of “collective mode spectroscopy” that drastically expands the number of experimental probes capable of detecting time-reversal symmetry breaking in unconventional superconductors. 
    more » « less