- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
De Lellis, Camillo (2)
-
Nardulli, Stefano (2)
-
Steinbrüchel, Simone (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We consider integral area-minimizing 2-dimensional currents$$T$$ in$$U\subset \mathbf {R}^{2+n}$$ with$$\partial T = Q\left [\!\![{\Gamma }\right ]\!\!]$$ , where$$Q\in \mathbf {N} \setminus \{0\}$$ and$$\Gamma $$ is sufficiently smooth. We prove that, if$$q\in \Gamma $$ is a point where the density of$$T$$ is strictly below$$\frac{Q+1}{2}$$ , then the current is regular at$$q$$ . The regularity is understood in the following sense: there is a neighborhood of$$q$$ in which$$T$$ consists of a finite number of regular minimal submanifolds meeting transversally at$$\Gamma $$ (and counted with the appropriate integer multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical theorem of Allard for$$Q=1$$ . As a corollary, if$$\Omega \subset \mathbf {R}^{2+n}$$ is a bounded uniformly convex set and$$\Gamma \subset \partial \Omega $$ a smooth 1-dimensional closed submanifold, then any area-minimizing current$$T$$ with$$\partial T = Q \left [\!\![{\Gamma }\right ]\!\!]$$ is regular in a neighborhood of $$\Gamma $$ .more » « less
-
De Lellis, Camillo; Nardulli, Stefano; Steinbrüchel, Simone (, Nonlinear Analysis)
An official website of the United States government
