skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Narovlansky, Vladimir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> We propose a new model of low dimensional de Sitter holography in the form of a pair of double-scaled SYK models at infinite temperature coupled via an equal energy constraintHL=HR. As a test of the duality, we compute the two-point function between two dressed SYK operators$$ {\mathcal{O}}_{\Delta } $$ O that preserve the constraint. We find that in the largeNlimit, the two-point function precisely matches with the Green’s function of a massive scalar field of mass squaredm2= 4∆(1 – ∆) in a 3D de Sitter space-time with radiusRdS/GN= 4πN/p2. In this correspondence, the SYK time is identified with the proper time difference between the two operators. We introduce a candidate gravity dual of the doubled SYK model given by a JT/de Sitter gravity model obtained via a circle reduction from 3D Einstein-de Sitter gravity. We comment on the physical meaning of the finite de Sitter temperature and entropy. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. A<sc>bstract</sc> We argue that at finite energies, double-scaled SYK has a semiclassical approximation controlled by a couplingλin which all observables are governed by a non-trivial saddle point. The Liouville description of double-scaled SYK suggests that the correlation functions define a geometry in a two-dimensional bulk, with the 2-point function describing the metric. For small coupling, the fluctuations are highly suppressed, and the bulk describes a rigid (A)dS spacetime. As the coupling increases, the fluctuations become stronger. We study the correction to the curvature of the bulk geometry induced by these fluctuations. We find that as we go deeper into the bulk the curvature increases and that the theory eventually becomes strongly coupled. In general, the curvature is related to energy fluctuations in light operators. We also compute the entanglement entropy of partially entangled thermal states in the semiclassical limit. 
    more » « less
  3. A bstract A pair of the 2D non-unitary minimal models M (2 , 5) is known to be equivalent to a variant of the M (3 , 10) minimal model. We discuss the RG flow from this model to another non-unitary minimal model, M (3 , 8). This provides new evidence for its previously proposed Ginzburg-Landau description, which is a ℤ 2 symmetric theory of two scalar fields with cubic interactions. We also point out that M (3 , 8) is equivalent to the (2 , 8) superconformal minimal model with the diagonal modular invariant. Using the 5-loop results for theories of scalar fields with cubic interactions, we exhibit the 6 − ϵ expansions of the dimensions of various operators. Their extrapolations are in quite good agreement with the exact results in 2D. We also use them to approximate the scaling dimensions in d = 3 , 4 , 5 for the theories in the M (3 , 8) universality class. 
    more » « less
  4. A bstract Negativity is a measure of entanglement that can be used both in pure and mixed states. The negativity spectrum is the spectrum of eigenvalues of the partially transposed density matrix, and characterizes the degree and “phase” of entanglement. For pure states, it is simply determined by the entanglement spectrum. We use a diagrammatic method complemented by a modification of the Ford-Fulkerson algorithm to find the negativity spectrum in general random tensor networks with large bond dimensions. In holography, these describe the entanglement of fixed-area states. It was found that many fixed-area states have a negativity spectrum given by a semi-circle. More generally, we find new negativity spectra that appear in random tensor networks, as well as in phase transitions in holographic states, wormholes, and holographic states with bulk matter. The smallest random tensor network is the same as a micro-canonical version of Jackiw-Teitelboim (JT) gravity decorated with end-of-the-world branes. We consider the semi-classical negativity of Hawking radiation and find that contributions from islands should be included. We verify this in the JT gravity model, showing the Euclidean wormhole origin of these contributions. 
    more » « less