skip to main content

Search for: All records

Creators/Authors contains: "Nash, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Submarine melting has been implicated in the accelerated retreat of marine‐terminating glaciers globally. Energetic ocean flows, such as subglacial discharge plumes, are known to enhance submarine melting in their immediate vicinity. Using observations and a large eddy simulation, we demonstrate that discharge plumes emit high‐frequency internal gravity waves that propagate along glacier termini and transfer energy to distant regions of the terminus. Our analysis of wave characteristics and their correlation with subglacial discharge forcing suggest that they derive their energy from turbulent motions within the discharge plume and its surface outflow. Accounting for the near‐terminus velocities associated with these waves increases predicted melt rates by up to 70%. This may help to explain known discrepancies between observed melt rates and theoretical predictions. Because the dynamical ingredients—a buoyant plume rising through a stratified ocean—are common to many tidewater glacier systems, such internal waves are likely to be widespread.

  2. Abstract

    Turbulence in geophysical flows tends to organize itself so that the mean flow remains close to a stability boundary in parameter space. That characteristic suggests self-organized criticality (SOC), a statistical property that has been identified in a range of complex phenomena including earthquakes, forest fires and solar flares. This note explores the relationship between the properties of forced, sheared, stratified turbulence (as found in oceans, atmospheres and other geophysical fluids) and those of SOC. Self-organization to the critical state is demonstrated in a wide range of cases drawn mostly (but not entirely) fromin situobservations of ocean turbulence. Turbulent events in the ocean also exhibit a second characteristic associated with SOC: their sizes follow a power-law distribution indicating self-similarity. These results suggest SOC as a new conceptual foundation for the study of geophysical turbulence, an explanation for the mixing efficiency of ocean turbulence and a potential for cross-fertilization with other areas of geophysics.

  3. Free, publicly-accessible full text available September 1, 2024
  4. Free, publicly-accessible full text available September 1, 2024
  5. A bstract The first measurement of the top quark pair ( $$ \textrm{t}\overline{\textrm{t}} $$ t t ¯ ) production cross section in proton-proton collisions at $$ \sqrt{s} $$ s = 13 . 6 TeV is presented. Data recorded with the CMS detector at the CERN LHC in Summer 2022, corresponding to an integrated luminosity of 1 . 21 fb − 1 , are analyzed. Events are selected with one or two charged leptons (electrons or muons) and additional jets. A maximum likelihood fit is performed in event categories defined by the number and flavors of the leptons, the number of jets, and the number of jets identified as originating from b quarks. An inclusive $$ \textrm{t}\overline{\textrm{t}} $$ t t ¯ production cross section of 881 ± 23 (stat + syst) ± 20 (lumi) pb is measured, in agreement with the standard model prediction of $$ {924}_{-40}^{+32} $$ 924 − 40 + 32 pb.
    Free, publicly-accessible full text available September 1, 2024
  6. A bstract A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb − 1 . The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W′ boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of t -channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the t -channel. The sensitivity of this analysis extends intomore »the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.« less
    Free, publicly-accessible full text available September 1, 2024
  7. Abstract The Precision Proton Spectrometer (PPS) of the CMS and TOTEM experiments collected 107.7 fb -1 in proton-proton (pp) collisions at the LHC at 13 TeV (Run 2). This paper describes the key features of the PPS alignment and optics calibrations, the proton reconstruction procedure, as well as the detector efficiency and the performance of the PPS simulation. The reconstruction and simulation are validated using a sample of (semi)exclusive dilepton events. The performance of PPS has proven the feasibility of continuously operating a near-beam proton spectrometer at a high luminosity hadron collider.
    Free, publicly-accessible full text available September 1, 2024
  8. A bstract A search for the electroweak production of a vector-like quark T′, decaying to a top quark and a Higgs boson is presented. The search is based on a sample of proton-proton collision events recorded at the LHC at $$ \sqrt{s} $$ s = 13 TeV, corresponding to an integrated luminosity of 138 fb − 1 . This is the first T′ search that exploits the Higgs boson decay to a pair of photons. For narrow isospin singlet T′ states with masses up to 1.1 TeV, the excellent diphoton invariant mass resolution of 1–2% results in an increased sensitivity compared to previous searches based on the same production mechanism. The electroweak production of a T′ quark with mass up to 960 GeV is excluded at 95% confidence level, assuming a coupling strength κ T = 0 . 25 and a relative decay width Γ /M T′ < 5%.
    Free, publicly-accessible full text available September 1, 2024
  9. Free, publicly-accessible full text available September 1, 2024