skip to main content

Search for: All records

Creators/Authors contains: "Nath, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2023
  2. Free, publicly-accessible full text available September 1, 2023
  3. Free, publicly-accessible full text available July 7, 2023
  4. Free, publicly-accessible full text available June 1, 2023
  5. Free, publicly-accessible full text available June 1, 2023
  6. Free, publicly-accessible full text available June 1, 2023
  7. Abstract The multiplicity dependence of jet production in pp collisions at the centre-of-mass energy of $$\sqrt{s} = 13\ {\mathrm {TeV}}$$ s = 13 TeV is studied for the first time. Jets are reconstructed from charged particles using the anti- $$k_\mathrm {T}$$ k T algorithm with resolution parameters R varying from 0.2 to 0.7. The jets are measured in the pseudorapidity range $$|\eta _{\mathrm{jet}}|< 0.9-R$$ | η jet | < 0.9 - R and in the transverse momentum range $$5more »by the ALICE forward detector V0. The $$p_{\mathrm T}$$ p T differential cross section of charged-particle jets are compared to leading order (LO) and next-to-leading order (NLO) perturbative quantum chromodynamics (pQCD) calculations. It is found that the data are better described by the NLO calculation, although the NLO prediction overestimates the jet cross section below $$20\ {\mathrm {GeV}}/c$$ 20 GeV / c . The cross section ratios for different R are also measured and compared to model calculations. These measurements provide insights into the angular dependence of jet fragmentation. The jet yield increases with increasing self-normalised charged-particle multiplicity. This increase shows only a weak dependence on jet transverse momentum and resolution parameter at the highest multiplicity. While such behaviour is qualitatively described by the present version of PYTHIA, quantitative description may require implementing new mechanisms for multi-particle production in hadronic collisions.« less
    Free, publicly-accessible full text available June 1, 2023