Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There is currently little physics education literature examining thinking and learning in graduate education and even less literature characterizing problem solving among physics graduate students despite this being an essential professional skill for physicists. Given reports of discrepancies between physics problem solving in the undergraduate classroom and “real-world” problem solving, we sought to investigate whether this discrepancy exists at the graduate level. We first investigate the problem-solving skills present in first-year graduate physics assignments. A recent framework that characterizes problem solving as decisions-to-be-made was used. Assignments were taken from the four core courses of one academic year at one research-intensive university and coded by two researchers. We found that only 4 of the 29 decisions in the framework were present in most of the assignments. We then interviewed 11 instructors from 3 universities and asked which decisions they expected of first-year graduate students. Eleven decisions were expected by eight or more of the participants, but only four of these decisions were commonly practiced on assignments. Therefore, there seems to be a mismatch between instructor expectations and practice of problem solving on assignments. This suggests that graduate physics courses may not be aligned with the problem-solving skills that physics graduate students will need in their research or future careers. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
ABSTRACT The microbial recycling of organic matter in marine sediments depends upon electron acceptors that are utilized based on availability and energetic yield. Since sulfate is the most abundant oxidant once oxygen has been depleted, the sulfide produced after sulfate reduction becomes an important electron donor for autotrophic microbes. The ability of sulfide to be re‐oxidized through multiple metabolic pathways and intermediates with variable oxidation states prompts investigation into which species are preferentially utilized and what are the factors that determine the fate of reduced sulfur species. Quantifying these sulfur intermediates in porewaters is a critical first step towards achieving a more complete understanding of the oxidative sulfur cycle, yet this has been accomplished in very few studies, none of which include oligotrophic sedimentary environments in the open ocean. Here we present profiles of porewater sulfur intermediates from sediments underlying oligotrophic regions of the ocean, which encompass about 75% of the ocean's surface and are characterized by low nutrient levels and productivity. Aiming at addressing uncertainties about if and how sulfide produced by the degradation of scarce sedimentary organic matter plays a role in carbon fixation in the sediment, we determine depth profiles of redox‐sensitive metals and sulfate isotope compositions and integrate these datasets with 16S rRNA microbial community composition data and solid‐phase sulfur concentrations. We did not find significant correlations between sulfur species or trace metals and specific sulfur cycling taxa, which suggests that microorganisms in pelagic and oxic sediments may be generalists utilizing flexible metabolisms to oxidize organic matter through different electron acceptors.more » « lessFree, publicly-accessible full text available February 19, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available November 6, 2025
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available May 1, 2026
-
Cyclical population dynamics are a common phenomenon in populations worldwide, yet the spatial organization of these cycles remains poorly understood. In this study, we investigated the spatial form and timing of a population collapse from 2018 to 2022 in Canada lynx (Lynx canadensis) across the northwest boreal forest. We analyzed survival, reproduction, and dispersal data from 143 individual global positioning system (GPS) collared lynx from populations across five study sites spanning interior Alaska to determine whether lynx displayed characteristics of a population wave following a concurrent wave in snowshoe hare (Lepus americanus) abundance. Reproductive rates declined across the study sites; however, site-level reproduction declined first in our easternmost study sites, supporting the idea of a population wave. Despite a clear increase in percent of dispersing lynx, there was no evidence of directional bias in dispersal following a hare population wave. Analysis did show increasingly poor survival for lynx dispersing to the east compared to combined resident and westward dispersal. This pattern is consistent with a survival-mediated population wave in lynx as the driver of the theorized population wave. The combination of these factors supports the idea of a hierarchical response to snowshoe hare population declines with a drop in lynx reproduction followed by increased dispersal, and finally reduced survival. All of this evidence is consistent with the expected characteristics of a population undergoing a traveling wave and supports the hypothesis that lynx presence may facilitate and mirror the underlying wave patterns in snowshoe hare.more » « lessFree, publicly-accessible full text available October 8, 2025
-
Cell expansion in a discrete region called the elongation zone drives root elongation. Analyzing time lapse images can quantify the expansion in kinematic terms as if it were fluid flow. We used horizontal microscopes to collect images from which custom software extracted the length of the elongation zone, the peak relative elemental growth rate (REGR) within it, the axial position of the REGR peak, and the root elongation rate. Automation enabled these kinematic traits to be measured in 1575 Arabidopsis seedlings representing 162 recombinant inbred lines (RILs) derived from a cross of Cvi and Ler ecotypes. We mapped ten quantitative trait loci (QTL), affecting the four kinematic traits. Three QTL affected two or more traits in these vertically oriented seedlings. We compared this genetic architecture with that previously determined for gravitropism using the same RIL population. The major QTL peaks for the kinematic traits did not overlap with the gravitropism QTL. Furthermore, no single kinematic trait correlated with quantitative descriptors of the gravitropism response curve across this population. In addition to mapping QTL for growth zone traits, this study showed that the size and shape of the elongation zone may vary widely without affecting the differential growth induced by gravity.more » « less
-
Free, publicly-accessible full text available March 12, 2026