skip to main content

Search for: All records

Creators/Authors contains: "Navarrete, Sergio A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Earth's biosphere is undergoing drastic reorganization due to the sixth mass extinction brought on by the Anthropocene. Impacts of local and regional extirpation of species have been demonstrated to propagate through the complex interaction networks they are part of, leading to secondary extinctions and exacerbating biodiversity loss. Contemporary ecological theory has developed several measures to analyse the structure and robustness of ecological networks under biodiversity loss. However, a toolbox for directly simulating and quantifying extinction cascades and creating novel interactions (i.e. rewiring) remains absent.

    Here, we presentNetworkExtinction—a novel R package which we have developed to explore the propagation of species extinction sequences through ecological networks and quantify the effects of rewiring potential in response to primary species extinctions. WithNetworkExtinction, we integrate ecological theory and computational simulations to develop functionality with which users may analyse and visualize the structure and robustness of ecological networks. The core functions introduced withNetworkExtinctionfocus on simulations of sequential primary extinctions and associated secondary extinctions, allowing user‐specified secondary extinction thresholds and realization of rewiring potential.

    With the packageNetworkExtinction, users can estimate the robustness of ecological networks after performing species extinction routines based on several algorithms. Moreover, users can compare the number of simulated secondary extinctions against a null model of random extinctions. In‐built visualizations enable graphing topological indices calculated by the deletion sequence functions after each simulation step. Finally, the user can estimate the network's degree distribution by fitting different common distributions. Here, we illustrate the use of the package and its outputs by analysing a Chilean coastal marine food web.

    NetworkExtinctionis a compact and easy‐to‐use R package with which users can quantify changes in ecological network structure in response to different patterns of species loss, thresholds and rewiring potential. Therefore, this package is particularly useful for evaluating ecosystem responses to anthropogenic and environmental perturbations that produce nonrandom and sometimes targeted, species extinctions.

    more » « less
  2. Abstract

    Dispersal and adaptation are the two primary mechanisms that set the range distributions for a population or species. As such, understanding how these mechanisms interact in marine organisms in particular – with capacity for long‐range dispersal and a poor understanding of what selective environments species are responding to – can provide useful insights for the exploration of biogeographic patterns. Previously, the barnacleNotochthamalus scabrosushas revealed two evolutionarily distinct lineages with a joint distribution that suggests an association with one of the two major biogeographic boundaries (~30°S) along the coast of Chile. However, spatial and genomic sampling of this system has been limited until now. We hypothesized that given the strong oceanographic and environmental shifts associated with the other major biogeographic boundary (~42°S) for Chilean coastal invertebrates, the southern mitochondrial lineage would dominate or go to fixation in locations further to the south. We also evaluated nuclear polymorphism data from 130 single nucleotide polymorphisms to evaluate the concordance of the signal from the nuclear genome with that of the mitochondrial sample. Through the application of standard population genetic approaches along with a Lagrangian ocean connectivity model, we describe the codistribution of these lineages through a simultaneous evaluation of coastal lineage frequencies, an approximation of larval behavior, and current‐driven dispersal. Our results show that this pattern could not persist without the two lineages having distinct environmental optima. We suggest that a more thorough integration of larval dynamics, explicit dispersal models, and near‐shore environmental analysis can explain much of the coastal biogeography of Chile.

    more » « less