skip to main content

Search for: All records

Creators/Authors contains: "Nayak, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2023
  2. A bstract We present a search for the charged lepton-flavor-violating decays ϒ(1 S ) → ℓ ± ℓ ′ ∓ and radiative charged lepton-flavour-violating decays ϒ(1 S ) → γ ℓ ± ℓ ′ ∓ [ ℓ , ℓ ′ = e, μ, τ ] using the 158 million ϒ(2 S ) sample collected by the Belle detector at the KEKB collider. This search uses ϒ(1 S ) mesons produced in ϒ(2 S ) → π + π − ϒ(1 S ) transitions. We do not find any significant signal, so we provide upper limits on the branching fractions at the 90% confidence level.
    Free, publicly-accessible full text available May 1, 2023
  3. A bstract We present the first measurement of the branching fraction of the singly Cabibbo-suppressed (SCS) decay $$ {\Lambda}_c^{+} $$ Λ c + → pη ′ with η ′ → ηπ + π − , using a data sample corresponding to an integrated luminosity of 981 fb − 1 , collected by the Belle detector at the KEKB e + e − asymmetric-energy collider. A significant $$ {\Lambda}_c^{+} $$ Λ c + → pη ′ signal is observed for the first time with a signal significance of 5.4 σ . The relative branching fraction with respect to the normalization mode $$ {\Lambda}_c^{+} $$ Λ c + → pK − π + is measured to be $$ \frac{\mathcal{B}\left({\Lambda}_c^{+}\to p\eta^{\prime}\right)}{\mathcal{B}\left({\Lambda}_c^{+}\to {pK}^{-}{\pi}^{+}\right)}=\left(7.54\pm 1.32\pm 0.73\right)\times {10}^{-3}, $$ B Λ c + → pη ′ B Λ c + → pK − π + = 7.54 ± 1.32 ± 0.73 × 10 − 3 , where the uncertainties are statistical and systematic, respectively. Using the world-average value of $$ \mathcal{B}\left({\Lambda}_c^{+}\to {pK}^{-}{\pi}^{+}\right) $$ B Λ c + → pK − π + = (6 . 28 ± 0 . 32) × 10 − 2 , we obtain $$ \mathcal{B}\left({\Lambda}_c^{+}\to p\eta^{\prime}\right)=\left(4.73\pm 0.82\pm 0.46\pm 0.24\right)\times {10}^{-4}, $$ Bmore »Λ c + → pη ′ = 4.73 ± 0.82 ± 0.46 ± 0.24 × 10 − 4 , where the uncertainties are statistical, systematic, and from $$ \mathcal{B}\left({\Lambda}_c^{+}\to {pK}^{-}{\pi}^{+}\right) $$ B Λ c + → pK − π + , respectively.« less
    Free, publicly-accessible full text available March 1, 2023
  4. Free, publicly-accessible full text available February 1, 2023
  5. Free, publicly-accessible full text available December 1, 2022
  6. Free, publicly-accessible full text available February 1, 2023
  7. Free, publicly-accessible full text available January 1, 2023
  8. Free, publicly-accessible full text available January 1, 2023
  9. Free, publicly-accessible full text available December 1, 2022
  10. Free, publicly-accessible full text available December 1, 2022