skip to main content


Search for: All records

Creators/Authors contains: "Nazarenko, Larissa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Stratospheric ozone, and its response to anthropogenic forcings, provides an important pathway for the coupling between atmospheric composition and climate. In addition to stratospheric ozone’s radiative impacts, recent studies have shown that changes in the ozone layer due to 4xCO2have a considerable impact on the Northern Hemisphere (NH) tropospheric circulation, inducing an equatorward shift of the North Atlantic jet during boreal winter. Using simulations produced with the NASA Goddard Institute for Space Studies (GISS) high-top climate model (E2.2), we show that this equatorward shift of the Atlantic jet can induce a more rapid weakening of the Atlantic meridional overturning circulation (AMOC). The weaker AMOC, in turn, results in an eastward acceleration and poleward shift of the Atlantic and Pacific jets, respectively, on longer time scales. As such, coupled feedbacks from both stratospheric ozone and the AMOC result in a two-time-scale response of the NH midlatitude jet to abrupt 4xCO2forcing: a “fast” response (5–20 years) during which it shifts equatorward and a “total” response (∼100–150 years) during which the jet accelerates and shifts poleward. The latter is driven by a weakening of the AMOC that develops in response to weaker surface zonal winds that result in reduced heat fluxes out of the subpolar gyre and reduced North Atlantic Deep Water formation. Our results suggest that stratospheric ozone changes in the lower stratosphere can have a surprisingly powerful effect on the AMOC, independent of other aspects of climate change.

     
    more » « less
    Free, publicly-accessible full text available May 15, 2025
  2. Abstract

    There is strong evidence that the expansion and intensification of irrigation over the twentieth century has affected climate in many regions. However, it remains uncertain if these irrigation effects, including buffered warming trends, will weaken or persist under future climate change conditions. Using a 20‐member climate model ensemble simulation, we demonstrate that irrigation will continue to attenuate greenhouse gas‐forced warming and soil moisture drying in many regions over the 21st century, including Mexico, the Mediterranean, Southwest Asia, and China. Notably, this occurs without any further expansion or intensification of irrigation beyond current levels, even while greenhouse gas forcing steadily increases. However, the magnitude and significance of these moderating irrigation effects vary across regions and are highly sensitive to the background climate state and the degree to which evapotranspiration is supply (moisture) versus demand (energy) limited. Further, limitations on water and land availability may restrict our ability to maintain modern irrigation rates into the future. Nevertheless, it is likely that irrigation, alongside other components of intensive land management, will continue to strongly modulate regional climate impacts in the future. Irrigation should therefore be considered in conjunction with other key regional anthropogenic forcings (e.g., land cover change and aerosols) when investigating the local manifestation of global climate drivers (e.g., greenhouse gases) in model projections.

     
    more » « less
  3. Abstract

    Anthropogenic influences have led to a strengthening and poleward shift of westerly winds over the Southern Ocean, especially during austral summer. We use observations, an idealized eddy‐resolving ocean sea ice channel model, and a global coupled model to explore the Southern Ocean response to a step change in westerly winds. Previous work hypothesized a two time scale response for sea surface temperature. Initially, Ekman transport cools the surface before sustained upwelling causes warming on decadal time scales. The fast response is robust across our models and the observations: We find Ekman‐driven cooling in the mixed layer, mixing‐driven warming below the mixed layer, and a small upwelling‐driven warming at the temperature inversion. The long‐term response is inaccessible from observations. Neither of our models shows a persistent upwelling anomaly, or long‐term, upwelling‐driven subsurface warming. Mesoscale eddies act to oppose the anomalous wind‐driven upwelling, through a process known as eddy compensation, thereby preventing long‐term warming.

     
    more » « less
  4. Abstract

    We compare equilibrium climate sensitivity (ECS) estimates from pairs of long (≥800‐year) control and abruptly quadrupled CO2simulations with shorter (150‐ and 300‐year) coupled atmosphere‐ocean simulations and slab ocean models (SOMs). Consistent with previous work, ECS estimates from shorter coupled simulations based on annual averages for years 1–150 underestimate those from SOM (−8% ± 13%) and long (−14% ± 8%) simulations. Analysis of only years 21–150 improved agreement with SOM (−2% ± 14%) and long (−8% ± 10%) estimates. Use of pentadal averages for years 51–150 results in improved agreement with long simulations (−4% ± 11%). While ECS estimates from current generation U.S. models based on SOM and coupled annual averages of years 1–150 range from 2.6°C to 5.3°C, estimates based longer simulations of the same models range from 3.2°C to 7.0°C. Such variations between methods argues for caution in comparison and interpretation of ECS estimates across models.

     
    more » « less