Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we propose IMA-GNN as an In-Memory Accelerator for centralized and decentralized Graph Neural Network inference, explore its potential in both settings and provide a guideline for the community targeting flexible and efficient edge computation. Leveraging IMA-GNN, we first model the computation and communication latencies of edge devices. We then present practical case studies on GNN-based taxi demand and supply prediction and also adopt four large graph datasets to quantitatively compare and analyze centralized and decentralized settings. Our cross-layer simulation results demonstrate that on average, IMA-GNN in the centralized setting can obtain ~790x communication speed-up compared to the decentralized GNN setting. However, the decentralized setting performs computation ~1400x faster while reducing the power consumption per device. This further underlines the need for a hybrid semi-decentralized GNN approach.more » « less
-
Many real-world applications require real-time and robust positioning of Internet of Things (IoT) devices. In this context, visible light communication (VLC) is a promising approach due to its advantages in terms of high accuracy, low cost, ubiquitous infrastructure, and freedom from RF interference. Nevertheless, there is a growing need to improve positioning speed and accuracy. In this paper, we propose and prototype a VLC-based positioning solution using retroreflectors attached to the IoT device of interest. The proposed algorithm uses the retroreflected power received by multiple photodiodes to estimate the euclidean and directional coordinates of the underlying IoT device. In particular, the relative relationship between reflected light magnitude and reflected power is used as input to trainable machine learning regression models. Such models are trained to estimate the coordinates. The proposed algorithm excels in its simplicity and fast computation. It also reduces the need for sensory devices and active operation. Additionally, after regression, Kalman filtering is applied as a post-processing operation to further stabilize the obtained estimates. The proposed algorithm is shown to provide stable, accurate, and fast. This has been verified by extensive experiments performed on a prototype in real-world environments. Experiments confirm a high level of positioning accuracy and the added benefit of Kalman filtering stabilization.more » « less