skip to main content


Search for: All records

Creators/Authors contains: "Neal, Zachary P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Shared memberships, social statuses, beliefs, and places can facilitate the formation of social ties. Two-mode projections provide a method for transforming two-mode data on individuals’ memberships in such groups into a one-mode network of their possible social ties. In this paper, I explore the opposite process: how social ties can facilitate the formation of groups, and how a two-mode network can be generated from a one-mode network. Drawing on theories of team formation, club joining, and organization recruitment, I propose three models that describe how such groups might emerge from the relationships in a social network. I show that these models can be used to generate two-mode networks that have characteristics commonly observed in empirical two-mode social networks and that they encode features of the one-mode networks from which they were generated. I conclude by discussing these models’ limitations and future directions for theory and methods concerning group formation. 
    more » « less
  2. Abstract

    Many applications require randomly sampling bipartite graphs with fixed degrees or randomly sampling incidence matrices with fixed row and column sums. Although several sampling algorithms exist, the ‘curveball’ algorithm is the most efficient with an asymptotic time complexity of $O(n~log~n)$ and has been proven to sample uniformly at random. In this article, we introduce the ‘fastball’ algorithm, which adopts a similar approach but has an asymptotic time complexity of $O(n)$. We show that a C$\texttt{++}$ implementation of fastball randomly samples large bipartite graphs with fixed degrees faster than curveball, and illustrate the value of this faster algorithm in the context of the fixed degree sequence model for backbone extraction.

     
    more » « less
  3. Cherifi, Hocine (Ed.)
    Networks are useful for representing phenomena in a broad range of domains. Although their ability to represent complexity can be a virtue, it is sometimes useful to focus on a simplified network that contains only the most important edges: the backbone. This paper introduces and demonstrates a substantially expanded version of the backbone package for R, which now provides methods for extracting backbones from weighted networks, weighted bipartite projections, and unweighted networks. For each type of network, fully replicable code is presented first for small toy examples, then for complete empirical examples using transportation, political, and social networks. The paper also demonstrates the implications of several issues of statistical inference that arise in backbone extraction. It concludes by briefly reviewing existing applications of backbone extraction using the backbone package, and future directions for research on network backbone extraction. 
    more » « less
  4. Abstract Political network data can often be challenging to collect and clean for analysis. This article demonstrates how the incidentally and backbone packages for R can be used together to construct networks among legislators in the US Congress. These networks can be customized to focus on a specific chamber (Senate or House of Representatives), session (2003 to present), legislation type (bills and resolutions), and policy area (32 topics). Four detailed examples with replicable code are presented to illustrate the types of networks and types of insights that can be obtained using these tools. 
    more » « less
  5. null (Ed.)
  6. Abstract Projections of bipartite or two-mode networks capture co-occurrences, and are used in diverse fields (e.g., ecology, economics, bibliometrics, politics) to represent unipartite networks. A key challenge in analyzing such networks is determining whether an observed number of co-occurrences between two nodes is significant, and therefore whether an edge exists between them. One approach, the fixed degree sequence model (FDSM), evaluates the significance of an edge’s weight by comparison to a null model in which the degree sequences of the original bipartite network are fixed. Although the FDSM is an intuitive null model, it is computationally expensive because it requires Monte Carlo simulation to estimate each edge’s p value, and therefore is impractical for large projections. In this paper, we explore four potential alternatives to FDSM: fixed fill model, fixed row model, fixed column model, and stochastic degree sequence model (SDSM). We compare these models to FDSM in terms of accuracy, speed, statistical power, similarity, and ability to recover known communities. We find that the computationally-fast SDSM offers a statistically conservative but close approximation of the computationally-impractical FDSM under a wide range of conditions, and that it correctly recovers a known community structure even when the signal is weak. Therefore, although each backbone model may have particular applications, we recommend SDSM for extracting the backbone of bipartite projections when FDSM is impractical. 
    more » « less
  7. null (Ed.)
  8. Rozenblat, Celine (Ed.)
    Bipartite projections are used in a wide range of network contexts including politics (bill co-sponsorship), genetics (gene co-expression), economics (executive board co-membership), and innovation (patent co-authorship). However, because bipartite projections are always weighted graphs, which are inherently challenging to analyze and visualize, it is often useful to examine the ‘backbone,’ an unweighted subgraph containing only the most significant edges. In this paper, we introduce the R package backbone for extracting the backbone of weighted bipartite projections, and use bill sponsorship data from the 114 th session of the United States Senate to demonstrate its functionality. 
    more » « less