skip to main content

Search for: All records

Creators/Authors contains: "Neale, Richard B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    To explore the interactions among column processes in the Community Atmosphere Model (CAM), the single‐column version of CAM (SCAM) is integrated for 1000 days in radiative‐convective equilibrium (RCE) with tropical values of boundary conditions, spanning a parameter or configuration space of model physics versions (v5 vs. v6), vertical resolution (standard and 60 levels), sea surface temperature (SST), and some interpretation‐driven experiments. The simulated time‐mean climate is reasonable, near observations and RCE of a cyclic cloud‐resolving model. Updraft detrainment in the deep convection scheme produces distinctive grid‐scale structures in humidity and cloud, which also interact with radiative transfer processes. These grid artifacts average out in multi‐column RCE results reported elsewhere, illustrating the nuts‐and‐bolts interpretability that SCAM adds to the hierarchy of model configurations. Multi‐day oscillations of precipitation arise from descent of warm convection‐capping layers starting near the tropopause, eventually reset by a burst of convective deepening. Experiments reveal how these oscillations depend critically on an internal parameter that controls the number of neutral buoyancy levels allowed for determining cloud top and computing dilute convective available potential energy in the deep convection scheme, and merely modified a little by disabling cloud‐base radiation (heating of cloud base). This strong dependence of transient behaviormore »in 1D on this parameter will be tested in the second part of this work, in which SCAM is coupled to a parameterized dynamics of two‐dimensional, linearized gravity wave, and in the 3D simulations in future study.

    « less
  2. Abstract

    The Community Earth System Model version 2 (CESM2) simulates a high equilibrium climate sensitivity (ECS > 5°C) and a Last Glacial Maximum (LGM) that is substantially colder than proxy temperatures. In this study, we examine the role of cloud parameterizations in simulating the LGM cooling in CESM2. Through substituting different versions of cloud schemes in the atmosphere model, we attribute the excessive LGM cooling to the new CESM2 schemes of cloud microphysics and ice nucleation. Further exploration suggests that removing an inappropriate limiter on cloud ice number (NoNimax) and decreasing the time‐step size (substepping) in cloud microphysics largely eliminate the excessive LGM cooling. NoNimax produces a more physically consistent treatment of mixed‐phase clouds, which leads to an increase in cloud ice content and a weaker shortwave cloud feedback over mid‐to‐high latitudes and the Southern Hemisphere subtropics. Microphysical substepping further weakens the shortwave cloud feedback. Based on NoNimax and microphysical substepping, we have developed a paleoclimate‐calibrated CESM2 (PaleoCalibr), which simulates well the observed twentieth century warming and spatial characteristics of key cloud and climate variables. PaleoCalibr has a lower ECS (∼4°C) and a 20% weaker aerosol‐cloud interaction than CESM2. PaleoCalibr represents a physically more consistent treatment of cloud microphysics thanmore »CESM2 and is a valuable tool in climate change studies, especially when a large climate forcing is involved. Our study highlights the unique value of paleoclimate constraints in informing the cloud parameterizations and ultimately the future climate projection.

    « less
  3. Abstract

    The Community Earth System Model 2 (CESM2) is the latest Earth System Model developed by the National Center for Atmospheric Research in collaboration with the university community and is significantly advanced in most components compared to its predecessor (CESM1). Here, CESM2's representation of the large‐scale atmospheric circulation and its variability is assessed. Further context is providedthrough comparison to the CESM1 large ensemble and other models from the Coupled Model Intercomparison Project (CMIP5 and CMIP6). This includes an assessment of the representation of jet streams and storm tracks, stationary waves, the global divergent circulation, the annular modes, the North Atlantic Oscillation, and blocking. Compared to CESM1, CESM2 is substantially improved in the representation of the storm tracks, Northern Hemisphere (NH) stationary waves, NH winter blocking and the global divergent circulation. It ranks within the top 10% of CMIP class models in many of these features. Some features of the Southern Hemisphere (SH) circulation have degraded, such as the SH jet strength, stationary waves, and blocking, although the SH jet stream is placed at approximately the correct location. This analysis also highlights systematic deficiencies in these features across the new CMIP6 archive, such as the continued tendency for the SH jetmore »stream to be placed too far equatorward, the North Atlantic westerlies to be too strong over Europe, the storm tracks as measured by low‐level meridional wind variance to be too weak and a lack of blocking in the North Atlantic sector.

    « less
  4. Abstract

    A new configuration of the Community Earth System Model (CESM)/Community Atmosphere Model with full chemistry (CAM‐chem) supporting the capability of horizontal mesh refinement through the use of the spectral element (SE) dynamical core is developed and called CESM/CAM‐chem‐SE. Horizontal mesh refinement in CESM/CAM‐chem‐SE is unique and novel in that pollutants such as ozone are accurately represented at human exposure relevant scales while also directly including global feedbacks. CESM/CAM‐chem‐SE with mesh refinement down to ∼14 km over the conterminous US (CONUS) is the beginning of the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICAv0). Here, MUSICAv0 is evaluated and used to better understand how horizontal resolution and chemical complexity impact ozone and ozone precursors over CONUS as compared to measurements from five aircraft campaigns, which occurred in 2013. This field campaign analysis demonstrates the importance of using finer horizontal resolution to accurately simulate ozone precursors such as nitrogen oxides and carbon monoxide. In general, the impact of using more complex chemistry on ozone and other oxidation products is more pronounced when using finer horizontal resolution where a larger number of chemical regimes are resolved. Large model biases for ozone near the surface remain in the Southeast US as compared to the aircraftmore »observations even with updated chemistry and finer horizontal resolution. This suggests a need for adding the capability of replacing sections of global emission inventories with regional inventories, increasing the vertical resolution in the planetary boundary layer, and reducing model biases in meteorological variables such as temperature and clouds.

    « less