skip to main content


Search for: All records

Creators/Authors contains: "Near, Thomas J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Geographic isolation is the primary driver of speciation in many vertebrate lineages. This trend is exemplified by North American darters, a clade of freshwater fishes where nearly all sister species pairs are allopatric and separated by millions of years of divergence. One of the only exceptions is the Lake Waccamaw endemic Etheostoma perlongum and its riverine sister species Etheostoma maculaticeps, which have no physical barriers to gene flow. Here we show that lacustrine speciation of E. perlongum is characterized by morphological and ecological divergence likely facilitated by a large chromosomal inversion. While E. perlongum is phylogenetically nested within the geographically widespread E. maculaticeps, there is a sharp genetic and morphological break coinciding with the lake–river boundary in the Waccamaw River system. Despite recent divergence, an active hybrid zone, and ongoing gene flow, analyses using a de novo reference genome reveal a 9 Mb chromosomal inversion with elevated divergence between E. perlongum and E. maculaticeps. This region exhibits striking synteny with known inversion supergenes in two distantly related fish lineages, suggesting deep evolutionary convergence of genomic architecture. Our results illustrate that rapid, ecological speciation with gene flow is possible even in lineages where geographic isolation is the dominant mechanism of speciation.

     
    more » « less
  2. The history of riverine fish diversification is largely a product of geographic isolation. Physical barriers that reduce or eliminate gene flow between populations facilitate divergence via genetic drift and natural selection, eventually leading to speciation. For freshwater organisms, diversification is often the product of drainage basin rearrangements. In young clades where the history of isolation is the most recent, evolutionary relationships can resemble a tangled web. One especially recalcitrant group of freshwater fishes is the Johnny Darter (Etheostoma nigrum) species complex, where traditional taxonomy and molecular phylogenetics indicate a history of gene flow and conflicting inferences of species diversity. Here we assemble a genomic dataset using double digest restriction site associated DNA (ddRAD) sequencing and use phylogenomic and population genetic approaches to investigate the evolutionary history of the complex of species that includes E. nigrum, E. olmstedi, E. perlongum, and E. susanae. We reveal and validate several evolutionary lineages that we delimit as species, highlighting the need for additional work to formally describe the diversity of the Etheostoma nigrum complex. Our analyses also identify gene flow among recently diverged lineages, including one instance involving E. susanae, a localized and endangered species. Phylogeographic structure within the Etheostoma nigrum species complex coincides with major geologic events, such as parallel divergence in river basins during Pliocene inundation of the Atlantic coastal plain and multiple northward post-glacial colonization routes tracking river basin rearrangements. Our study serves as a nuanced example of how low dispersal rates coupled with geographic isolation among disconnected river systems in eastern North America has produced one of the world’s freshwater biodiversity hotspots. 
    more » « less
  3. The emergence of a new phylogeny of ray-finned fishes at the turn of the twenty-first century marked a paradigm shift in understanding the evolutionary history of half of living vertebrates. We review how the new ray-finned fish phylogeny radically departs from classical expectations based on morphology. We focus on evolutionary relationships that span the backbone of ray-finned fish phylogeny, from the earliest divergences among teleosts and nonteleosts to the resolution of major lineages of Percomorpha. Throughout, we feature advances gained by the new phylogeny toward a broader understanding of ray-finned fish evolutionary history and the implications for topics that span from the genetics of human health to reconsidering the concept of living fossils. Additionally, we discuss conceptual challenges that involve reconciling taxonomic classification with phylogenetic relationships and propose an alternate higher-level classification for Percomorpha. Our review highlights remaining areas of phylogenetic uncertainty and opportunities for comparative investigations empowered by this new phylogenetic perspective on ray-finned fishes. 
    more » « less
  4. null (Ed.)
    The fish clade Pelagiaria, which includes tunas as its most famous members, evolved remarkable morphological and ecological variety in a setting not generally considered conducive to diversification: the open ocean. Relationships within Pelagiaria have proven elusive due to short internodes subtending major lineages suggestive of rapid early divergences. Using a novel sequence dataset of over 1000 ultraconserved DNA elements (UCEs) for 94 of the 286 species of Pelagiaria (more than 70% of genera), we provide a time-calibrated phylogeny for this widely distributed clade. Some inferred relationships have clear precedents (e.g. the monophyly of ‘core’ Stromateoidei, and a clade comprising ‘Gempylidae’ and Trichiuridae), but others are unexpected despite strong support (e.g. Chiasmodontidae + Tetragonurus ). Relaxed molecular clock analysis using node-based fossil calibrations estimates a latest Cretaceous origin for Pelagiaria, with crown-group families restricted to the Cenozoic. Estimated mean speciation rates decline from the origin of the group in the latest Cretaceous, although credible intervals for root and tip rates are broad and overlap in most cases, and there is higher-than-expected partitioning of body shape diversity (measured as fineness ratio) between clades concentrated during the Palaeocene–Eocene. By contrast, more direct measures of ecology show either no substantial deviation from a null model of diversification (diet) or patterns consistent with evolutionary constraint or high rates of recent change (depth habitat). Collectively, these results indicate a mosaic model of diversification. Pelagiarians show high morphological disparity and modest species richness compared to better-studied fish radiations in contrasting environments. However, this pattern is also apparent in other clades in open-ocean or deep-sea habitats, and suggests that comparative study of such groups might provide a more inclusive model of the evolution of diversity in fishes. 
    more » « less