skip to main content

Search for: All records

Creators/Authors contains: "Nedosekin, Dmitry A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Aggregation of proteins is a prominent hallmark of virtually all neurodegenerative disorders including Alzheimer’s, Parkinson’s and Huntington’s diseases. Little progress has been made in their treatment to slow or prevent the formation of aggregates by post-translational modification and regulation of cellular responses to misfolded proteins. Here, we introduce a label-free, laser-based photothermal treatment of polyglutamine (polyQ) aggregates in aC. elegansnematode model of huntingtin-like polyQ aggregation. As a proof of principle, we demonstrated that nanosecond laser pulse-induced local photothermal heating can directly disrupt the aggregates so as to delay their accumulation, maintain motility, and extend the lifespan of treated nematodes. These beneficial effects were validated by confocal photothermal, fluorescence, and video imaging. The results obtained demonstrate that our theranostics platform, integrating photothermal therapy without drugs or other chemicals, combined with advanced imaging to monitor photothermal ablation of aggregates, initiates systemic recovery and thus validates the concept of aggregate-disruption treatments for neurodegenerative diseases in humans.

    more » « less
  2. Abstract

    Pancreatic cancer is one of the most complex types of cancers to detect, diagnose, and treat. However, the field of nanomedicine has strong potential to address such challenges. When evaluating the diffusion and penetration of theranostic nanoparticles, the extracellular matrix (ECM) is of crucial importance because it acts as a barrier to the tumor microenvironment. In the present study, the penetration of functionalized, fluorescent gold nanorods into large (>500 μm) multicellular 3D tissue spheroids was studied using a multimodal imaging approach. The spheroids were generated by co-culturing pancreatic cancer cells and pancreatic stellate cells in multiple ratios to mimic variable tumor-stromal compositions and to investigate nanoparticle penetration. Fluorescence live imaging, photothermal, and photoacoustic analysis were utilized to examine nanoparticle behavior in the spheroids. Uniquely, the nanorods are intrinsically photoacoustic and photothermal, enabling multi-imaging detection even when fluorescence tracking is not possible or ideal.

    more » « less
  3. Abstract

    Bloodstream infections, especially those that are antibiotic resistant, pose a significant challenge to health care leading to increased hospitalization time and patient mortality. There are different facets to this problem that make these diseases difficult to treat, such as the difficulty to detect bacteria in the blood and the poorly understood mechanism of bacterial invasion into and out of the circulatory system. However, little progress has been made in developing techniques to study bacteria dynamics in the bloodstream. Here, we present a new approach using anin vivoflow cytometry platform for real‐time, noninvasive, label‐free, and quantitative monitoring of the lifespan of green fluorescent protein‐expressingStaphylococcus aureusandPseudomonas aeruginosain a murine model. We report a relatively fast average rate of clearance forS. aureus(k= 0.37 ± 0.09 min−1, half‐life ~1.9 min) and a slower rate forP. aeruginosa(k= 0.07 ± 0.02 min−1, half‐life ~9.6 min). We also observed what appears to be two stages of clearance forS. aureus, whileP. aeruginosaappeared only to have a single stage of clearance. Our results demonstrate that an advanced research tool can be used for studying the dynamics of bacteria cells directly in the bloodstream, providing insight into the progression of infectious diseases in circulation. © 2019 International Society for Advancement of Cytometry

    more » « less
  4. Abstract

    Most cancer patients die from metastatic disease as a result of a circulating tumor cell (CTC) spreading from a primary tumor through the blood circulation to distant organs. Many studies have demonstrated the tremendous potential of using CTC counts as prognostic markers of metastatic development and therapeutic efficacy. However, it is only the viable CTCs capable of surviving in the blood circulation that can create distant metastasis. To date, little progress has been made in understanding what proportion of CTCs is viable and what proportion is in an apoptotic state. Here, we introduce a novel approach toward in situ characterization of CTC apoptosis status using a multicolor in vivo flow cytometry platform with fluorescent detection for the real‐time identification and enumeration of such cells directly in blood flow. The proof of concept was demonstrated with two‐color fluorescence flow cytometry (FFC) using breast cancer cells MDA‐MB‐231 expressing green fluorescein protein (GFP), staurosporine as an activator of apoptosis, Annexin‐V apoptotic kit with orange dye color, and a mouse model. The future application of this new platform for real‐time monitoring of antitumor drug efficiency is discussed. © 2019 International Society for Advancement of Cytometry

    more » « less