skip to main content

Search for: All records

Creators/Authors contains: "Nelson, Carl A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This paper outlines the design of a reconfigurable, partially disposable, tendon-driven robotic arm for providing assistance in laparoscopic surgery. The rationale for its development and design objectives are provided, followed by a description of its mechanical design. Kinematic simulations to assess workspace are presented, and a first-stage assessment of the functionality of a prototype using a custom test bench is also included.

  2. Most robots for minimally invasive surgery (MIS) are large, bulky devices which mimic the paradigm of manual MIS by manipulating long, rigid instruments from outside the body [1]. Some of these incorporate “wristed” instruments to place some local dexterity at or near the tool tip [2]. In contrast, a small number of MIS robot designs place all of the degrees of freedom inside the patient’s body in order to increase the local dexterity [3].