skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nelson, Jane C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gas-phase molecules are a promising platform to elucidate the mechanisms of action and scope of polaritons for optical control of chemistry. Polaritons arise from the strong coupling of a dipole-allowed molecular transition with the photonic mode of an optical cavity. There is mounting evidence of modified reactivity under polaritonic conditions; however, the complex condensed-phase environment of most experimental demonstrations impedes mechanistic understanding of this phenomenon. While the gas phase was the playground of early efforts in atomic cavity quantum electrodynamics, we have only recently demonstrated the formation of molecular polaritons under these conditions. Studying the reactivity of isolated gas-phase molecules under strong coupling would eliminate solvent interactions and enable quantum state resolution of reaction progress. In this Perspective, we contextualize recent gas-phase efforts in the field of polariton chemistry and offer a practical guide for experimental design moving forward. 
    more » « less
  2. Cavity coupling of gas-phase molecules will enable studies of benchmark chemical processes under strong light–matter interactions with a high level of experimental control and no solvent effects. We recently demonstrated the formation of gas-phase molecular polaritons by strongly coupling bright ν3, J = 3 → 4 rovibrational transitions of methane (CH4) to a Fabry–Pérot optical cavity mode inside a cryogenic buffer gas cell. Here, we further explore the flexible capabilities of this infrastructure. We show that we can greatly increase the collective coupling strength of the molecular ensemble to the cavity by increasing the intracavity CH4 number density. In doing so, we can tune from the single-mode coupling regime to a multimode coupling regime in which many nested polaritonic states arise as the Rabi splitting approaches the cavity mode spacing. We explore polariton formation for cavity geometries of varying length, finesse, and mirror radius of curvature. We also report a proof-of-principle demonstration of rovibrational gas-phase polariton formation at room temperature. This experimental flexibility affords a great degree of control over the properties of molecular polaritons and opens up a wider range of simple molecular processes to future interrogation under strong cavity-coupling. We anticipate that ongoing work in gas-phase polaritonics will facilitate convergence between experimental results and theoretical models of cavity-altered chemistry and physics. 
    more » « less