skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Nelson, Todd G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract The ability to deploy a planar surface to a desired convex profile with a simple actuation can enhance foldable or morphing airfoils, deployable antennae and reflectors, and other applications where a specific profile geometry is desired from a planar sheet. A model using a system of rigid links joined by torsional springs of tailorable stiffness is employed to create an approximate curved surface when two opposing tip loads are applied. A system of equations describing the shape of the surface during deployment is developed. The physical implementation of the model uses compliant torsion bars as the torsion springs. A multidimensional optimization algorithm is presented to place joints to minimize the error from the rigid-link approximation and account for additional manufacturing and stress considerations in the torsion bars. A proof is presented to show that equal torsion spring spacing along the horizontal axis of deployed parabolic profiles will result in minimizing the area between the model’s rigid-link approximation and smooth curve. The model is demonstrated through the physical construction of a deployable airfoil surface and a metallic deployable parabolic reflector. 
    more » « less
  2. null (Ed.)
    Abstract

    The ability to deploy a planar surface to a desired convex profile can enhance foldable or morphing airfoils, deployable antennae and reflectors, and other applications where a specific profile geometry is desired from a planar sheet. A model using a system of rigid links joined by torsional springs of tailorable stiffness is employed to create an approximate curved surface when two opposing tip loads are applied. The physical implementation of the model uses compliant torsion bars as the torsion springs. A multidimensional optimization algorithm is presented to minimize the error from the rigid-link approximation and account for additional manufacturing and stress considerations in the torsion bars. A proof is presented to show that equal torsion spring spacing along the horizontal axis of deployed parabolic profiles will result in minimizing the area between the model’s rigid-link approximation and smooth curve. The model is demonstrated through the physical construction of a deployable airfoil surface and a metallic deployable parabolic reflector.

     
    more » « less
  3. The trend toward smaller mechanism footprints and volumes, while maintaining the ability to perform complex tasks, presents the opportunity for exploration of hypercompact mechanical systems integrated with curved surfaces. Developable surfaces are shapes that a flat sheet can take without tearing or stretching, and they represent a wide range of manufactured surfaces. This work introduces “developable mechanisms” as devices that emerge from or conform to developable surfaces. They are made possible by aligning hinge axes with developable surface ruling lines to enable mobility. Because rigid-link motion depends on the relative orientation of hinge axes and not link geometry, links can take the shape of the corresponding developable surface. Mechanisms are classified by their associated surface type, and these relationships are defined and demonstrated by example. Developable mechanisms show promise for meeting unfilled needs using systems not previously envisioned. 
    more » « less