skip to main content

Search for: All records

Creators/Authors contains: "Nelson, W. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The past ∼200 million years of Earth's geomagnetic field behavior have been recorded within oceanic basalts, many of which are only accessible via scientific ocean drilling. Obtaining the best possible paleomagnetic measurements from such valuable samples requires an a priori understanding of their magnetic mineralogies when choosing the most appropriate protocol for stepwise demagnetization experiments (either alternating field or thermal). Here, we present a quick, and non‐destructive method that utilizes the amplitude‐dependence of magnetic susceptibility to screen submarine basalts prior to choosing a demagnetization protocol, whenever conducting a pilot study or other detailed rock‐magnetic characterization is not possible. We demonstrate this method using samples acquired during International Ocean Discovery Program Expedition 391. Our approach is rooted in the observation that amplitude‐dependent magnetic susceptibility is observed in basalt samples whose dominant magnetic carrier is multidomain titanomagnetite (∼TM60–65, (Ti0.60–0.65Fe0.35–0.40)Fe2O4). Samples with low Ti contents within titanomagnetite or samples that have experienced a high degree of oxidative weathering do not display appreciable amplitude dependence. Due to their low Curie temperatures, basalts that possess amplitude‐dependence should ideally be demagnetized either using alternating fields or via finely‐spaced thermal demagnetization heating steps below 300°C. Our screening method can enhance the success rate of paleomagnetic studies of oceanic basalt samples.

    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Abstract

    Young mafic lavas from the East African Western Rift record melting of subcontinental lithospheric mantle that was metasomatically modified by multiple tectonic events. We report new isotope data from monogenetic cinder cones near Bufumbira, Uganda, in the Virunga Volcanic Field:87Sr/86Sr = 0.7059–0.7079,εNd = −6.5 to −1.3,εHf = −6.3 to +0.9,208Pb/204Pb = 40.1–40.7,207Pb/204Pb = 15.68–15.75, and206Pb/204Pb = 19.27–19.45. Olivine phenocrysts from the Bufumbira lavas have3He/4He = 6.0–7.4RA. The isotopic data, in conjunction with major and trace element systematics, indicate that primitive Bufumbira magmas are derived from two different metasomatized lithospheric source domains. Melts generated by lower degrees of melting record greater contributions from ∼1 to 2 Ga isotopically enriched garnet‐amphibole‐phlogopite pyroxenite veins within the lithosphere. As melting progresses, these vein melts become increasingly diluted by melts that originate near the lithosphere/asthenosphere boundary, shifting the isotopic compositions toward the common lithospheric mantle (CLM) proposed by Furman and Graham (1999, This ∼450–500 Ma source domain appears to underlie all Western Rift volcanic provinces and is characterized by87Sr/86Sr ∼ 0.705,εNd∼ 0,εHf∼ +1 to +3,206Pb/204Pb ∼ 19.0–19.2,208Pb/204Pb ∼ 39.7, and3He/4He ∼ 7RA. Basal portions of the dense subcontinental lithospheric mantle may become gravitationally unstable and founder into underlying warmer asthenosphere, exposing surfaces where melting of locally heterogeneous veins produces small‐volume, alkaline mafic melts. Mafic lavas from all Western Rift volcanic provinces record mixing between the CLM and locally variable metasomatized source domains, suggesting this style of melt generation is fundamental to the development of magma‐poor rifts.

    more » « less
  3. Abstract

    Valdivia Bank (VB) is a Late Cretaceous oceanic plateau formed by volcanism from the Tristan‐Gough hotspot at the Mid‐Atlantic Ridge (MAR). To better understand its origin and evolution, magnetic data were used to generate a magnetic anomaly grid, which was inverted to determine crustal magnetization. The magnetization model reveals quasi‐linear polarity zones crossing the plateau and following expected MAR paleo‐locations, implying formation by seafloor spreading over ∼4 Myr during the formation of anomalies C34n‐C33r. Paleomagnetism and biostratigraphy data from International Ocean Discovery Program Expedition 391 confirm the magnetic interpretation. Anomaly C33r is split into two negative bands, likely by a westward ridge jump. One of these negative anomalies coincides with deep rift valleys, indicating their age and mechanism of formation. These findings imply that VB originated by seafloor spreading‐type volcanism during a plate reorganization, not from a vertical stack of lava flows as expected for a large volcano.

    more » « less