skip to main content


Search for: All records

Creators/Authors contains: "Nerenberg, Paul S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2025
  2. This complete evidence-based practice paper discusses the strategies and results of an introduction to mechanics course, designed to prepare students for introductory-level physics and other fundamental courses in engineering, such as statics, strength of materials, and dynamics. The course was developed to address historically high failure (DFW) rates in the physics courses and is part of a set of interventions implemented to support student success in a college of engineering and computer science. The course focuses on providing in-depth understanding of Newton’s Laws of motion, free-body diagrams, and linear and projectile motion. Because it focuses on a limited number of competencies, it is possible to spend more time on inquiry-based activities and in-class discussions. The course framework was designed considering the Ebbinghaus’ Forgetting Curve, to provide students with learning opportunities in 6-day cycles: (i) day 1: a pre-class learning activity (reading or video) and a quiz; (ii) day 2: in-class Kahoot low-stakes quiz with discussion, a short lecture with embedded time for problem-solving and discussion, and in-class activities (labs, group projects); (iii) day 4: homework due two days after the class; (iv) day 6: homework self-reflection (autopsy based on provided solutions) two days after homework is due. The assessment of course performance is based on the well-characterized force concept inventory (FCI) exam that is administered before the intro to mechanics course and both before and after the Physics I course; and on student performance (grades) in Physics and Statics courses. Results from the FCI pre-test show that students who took the introduction to mechanics course (treatment group) started the physics course with a much better understanding of force concepts than other students in the course. The FCI post-test shows better normalized gain for the treatment group, compared to other students, which is also aligned with student performance in the course. Additionally, student performance is significantly better in statics, with 25% DWF rate compared to 50% for the other students. In summary, the framework of the course, which focuses on providing students with in-depth understanding of force concepts, has led to better learning and performance in Physics I, but importantly it has also helped students achieve better performance in the Statics course, the first fundamental course in civil and mechanical engineering programs. 
    more » « less
  3. null (Ed.)
    Abstract The restrained electrostatic potential (RESP) approach is a highly regarded and widely used method of assigning partial charges to molecules for simulations. RESP uses a quantum-mechanical method that yields fortuitous overpolarization and thereby accounts only approximately for self-polarization of molecules in the condensed phase. Here we present RESP2, a next generation of this approach, where the polarity of the charges is tuned by a parameter, δ, which scales the contributions from gas- and aqueous-phase calculations. When the complete non-bonded force field model, including Lennard-Jones parameters, is optimized to liquid properties, improved accuracy is achieved, even with this reduced set of five Lennard-Jones types. We argue that RESP2 with δ  ≈ 0.6 (60% aqueous, 40% gas-phase charges) is an accurate and robust method of generating partial charges, and that a small set of Lennard-Jones types is a good starting point for a systematic re-optimization of this important non-bonded term. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)