Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available June 29, 2026
- 
            Free, publicly-accessible full text available November 1, 2025
- 
            Abstract Mixed electronic-ionic conductors are crucial for various technologies, including harvesting power from humidity in a durable, self-sustainable, manner unrestricted by location or environment1,2. Biological proteins have been proposed as mixed conductors for 50 years3,4. Recently,Geobacter sulfurreducenspili filaments have been claimed to act as nanowires to generate power5,6. Here, we show that the power is generated byG. sulfurreducens-produced cytochrome OmcZ nanowires that show 20,000-fold higher electron conductivity than pili7. Remarkably, nanowires show ultrahigh electron and proton mobility (>0.25 cm2/Vs), owing to directional charge migration through seamlessly-stacked hemes and a charged, hydrogen-bonding surface, respectively. AC impedance spectroscopy and DC conductivity measurements using four-probe van der Pauw and back-gated field-effect-transistor devices reveal that humidity increases carrier mobility by 30,000-fold. Cooling halves the activation energy, thereby accelerating charge transport. Electrochemical measurements identify the voltage and mobilities required to switch pure electronic conduction to mixed conduction for power generation. The high aspect ratio (1:1000) and hydrophilic nanowire surface captures moisture efficiently to reduce oxygen reversibly, generating large potentials (>0.5 V) necessary to sustain high power. Our studies establish a new class of biologically-synthesized, low-cost and high-performance mixed-conductors and identify key design principles for improving power output using highly-tunable electronic and protein structures.more » « less
- 
            Abstract Metal–organic frameworks (MOFs) with mobile charges have attracted significant attention due to their potential applications in photoelectric devices, chemical resistance sensors, and catalysis. However, fundamental understanding of the charge transport pathway within the framework and the key properties that determine the performance of conductive MOFs in photoelectric devices remain underexplored. Herein, we report the mechanisms of photoinduced charge transport and electron dynamics in the conductive 2D M−HHTP (M=Cu, Zn or Cu/Zn mixed; HHTP=2,3,6,7,10,11‐hexahydroxytriphenylene) MOFs and their correlation with photoconductivity using the combination of time‐resolved terahertz spectroscopy, optical transient absorption spectroscopy, X‐ray transient absorption spectroscopy, and density functional theory (DFT) calculations. We identify the through‐space hole transport mechanism through the interlayer sheet π–π interaction, where photoinduced hole state resides in HHTP ligand and electronic state is localized at the metal center. Moreover, the photoconductivity of the Cu−HHTP MOF is found to be 65.5 S m−1, which represents the record high photoconductivity for porous MOF materials based on catecholate ligands.more » « less
- 
            Sadwick, Laurence P.; Yang, Tianxin (Ed.)
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
