skip to main content

Search for: All records

Creators/Authors contains: "Neubig, Graham"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2024
  2. Figurative and metaphorical language are commonplace in discourse, and figurative expressions play an important role in communication and cognition. However, figurative language has been a relatively under-studied area in NLP, and it remains an open question to what extent modern language models can interpret nonliteral phrases. To address this question, we introduce Fig-QA, a Winograd-style nonliteral language understanding task consisting of correctly interpreting paired figurative phrases with divergent meanings. We evaluate the performance of several state-of-the-art language models on this task, and find that although language models achieve performance significantly over chance, they still fall short of human performance, particularly in zero- or few-shot settings. This suggests that further work is needed to improve the nonliteral reasoning capabilities of language models.
    Free, publicly-accessible full text available July 10, 2023
  3. A great part of software development involves conceptualizing or communicating the underlying procedures and logic that needs to be expressed in programs. One major difficulty of programming is turning concept into code , especially when dealing with the APIs of unfamiliar libraries. Recently, there has been a proliferation of machine learning methods for code generation and retrieval from natural language queries , but these have primarily been evaluated purely based on retrieval accuracy or overlap of generated code with developer-written code, and the actual effect of these methods on the developer workflow is surprisingly unattested. In this article, we perform the first comprehensive investigation of the promise and challenges of using such technology inside the PyCharm IDE, asking, “At the current state of technology does it improve developer productivity or accuracy, how does it affect the developer experience, and what are the remaining gaps and challenges?” To facilitate the study, we first develop a plugin for the PyCharm IDE that implements a hybrid of code generation and code retrieval functionality, and we orchestrate virtual environments to enable collection of many user events (e.g., web browsing, keystrokes, fine-grained code edits). We ask developers with various backgrounds to complete 7 varieties ofmore »14 Python programming tasks ranging from basic file manipulation to machine learning or data visualization, with or without the help of the plugin. While qualitative surveys of developer experience are largely positive, quantitative results with regards to increased productivity, code quality, or program correctness are inconclusive. Further analysis identifies several pain points that could improve the effectiveness of future machine learning-based code generation/retrieval developer assistants and demonstrates when developers prefer code generation over code retrieval and vice versa. We release all data and software to pave the road for future empirical studies on this topic, as well as development of better code generation models.« less
  4. Variable names are critical for conveying intended program behavior. Machine learning-based program analysis methods use variable name representations for a wide range of tasks, such as suggesting new variable names and bug detection. Ideally, such methods could capture semantic relationships between names beyond syntactic similarity, e.g., the fact that the names average and mean are similar. Unfortunately, previous work has found that even the best of previous representation approaches primarily capture "relatedness" (whether two variables are linked at all), rather than "similarity" (whether they actually have the same meaning). We propose VarCLR, a new approach for learning semantic representations of variable names that effectively captures variable similarity in this stricter sense. We observe that this problem is an excellent fit for contrastive learning, which aims to minimize the distance between explicitly similar inputs, while maximizing the distance between dissimilar inputs. This requires labeled training data, and thus we construct a novel, weakly-supervised variable renaming dataset mined from GitHub edits. We show that VarCLR enables the effective application of sophisticated, general-purpose language models like BERT, to variable name representation and thus also to related downstream tasks like variable name similarity search or spelling correction. VarCLR produces models that significantly outperform themore »state-of-the-art on IdBench, an existing benchmark that explicitly captures variable similarity (as distinct from relatedness). Finally, we contribute a release of all data, code, and pre-trained models, aiming to provide a drop-in replacement for variable representations used in either existing or future program analyses that rely on variable names.« less
  5. Theory of mind, the ability to model others’ thoughts and desires, is a cornerstone of human social intelligence. This makes it an important challenge for the machine learning community, but previous works mainly attempt to design agents that model the "mental state" of others as passive observers or in specific predefined roles, such as in speaker-listener scenarios. In contrast, we propose to model machine theory of mind in a more general symmetric scenario. We introduce a multi-agent environment SymmToM where, like in real life, all agents can speak, listen, see other agents, and move freely through the world. Effective strategies to maximize an agent’s reward require it to develop a theory of mind. We show that reinforcement learning agents that model the mental states of others achieve significant performance improvements over agents with no such theory of mind model. Importantly, our best agents still fail to achieve performance comparable to agents with access to the gold-standard mental state of other agents, demonstrating that the modeling of theory of mind in multi-agent scenarios is very much an open challenge.
  6. Children do not learn language from passively analyzing correlations between language and observations, but from interaction with caregivers or peers. The non-nativist approach claims that the main driver of language learning should be to achieve communicative goals. Imitation, on the other hand, is another natural desire that many argue influences language learning. However, there are still gaps in the research on what roles communicative goals and imitating linguistic input play in language acquisition, due to the difficulty of performing comprehensive experiments with human learners. In this paper, we propose a computational framework using simulated experiments that allows us to compare the roles of the two drivers. Specifically, we simulate a two-way communication game between a speaker, corresponding to a language learner, and a listener, corresponding to a caregiver or teacher. The speaker's communicative goals are modeled as rewards for successful completion of a referential game, and imitation is performed by mimicking feedback from the listener. The listener adaptively chooses to give feedback and makes choices based on the speaker's utterances. With empirical results on naturalistic visual and language data, we find that communicative goals play an important role in driving language learning, whereas imitation accelerates the learning process. We alsomore »find that (1) models trained with communicative goals tend to use minimal vocabulary and utterances and overextend them to concepts outside the original word meanings; (2) the strategy with which the listener provides feedback also influences the learning results and speed. Code and data for replicating the experiments are available (https://bit.ly/interactgym) to spur future research on models for computational studies of language learning.« less
  7. The performance of multilingual pretrained models is highly dependent on the availability of monolingual or parallel text present in a target language. Thus, the majority of the world’s languages cannot benefit from recent progress in NLP as they have no or limited textual data. To expand possibilities of using NLP technology in these under-represented languages, we systematically study strategies that relax the reliance on conventional language resources through the use of bilingual lexicons, an alternative resource with much better language coverage. We analyze different strategies to synthesize textual or labeled data using lexicons, and how this data can be combined with monolingual or parallel text when available. For 19 under-represented languages across 3 tasks, our methods lead to consistent improvements of up to 5 and 15 points with and without extra monolingual text respectively. Overall, our study highlights how NLP methods can be adapted to thousands more languages that are under-served by current technology.