skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Neumark, Daniel M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The photophysics of thiobases—nucleobases in which one or more oxygen atoms are replaced with sulfur atoms— vary greatly depending on the location of sulfonation. Not only are direct dynamics of a neutral thiobase impacted, but also the dynamics of excess electron accommodation. In this work, time-resolved photoelectron spectroscopy is used to measure binary anionic clusters of iodide and 4-thiouracil, I− · 4TU. We investigate charge transfer dynamics driven by excitation at 3.88 eV, corresponding to the lowest ππ* transition of the thiouracil, and at 4.16 eV, near the cluster vertical detachment energy. The photoexcited state dynamics are probed by photodetachment with 1.55 and 3.14 eV pulses. Excitation at 3.88 eV leads to a signal from a valence-bound ion only, indicating a charge accommodation mechanism that does not involve a dipole-bound anion as an intermediate. Excitation at 4.16 eV rapidly gives rise to dipole-bound and valence-bound ion signals, with a second rise in the valence-bound signal corresponding to the decay of the dipole-bound signal. The dynamics associated with the low energy ππ* excitation of 4-thiouracil provide a clear experimental proof for the importance of localized excitation and electron backfilling in halide–nucleobase clusters. 
    more » « less
  2. Ultrafast UV photophysics of adenine and its derivatives are interrogated by XUV-TRPES with a gas-dynamic flat liquid jet. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  3. X-ray Transient Absorption Spectroscopy (XTAS) and theoretical calculations are used to study CCl 4 + prepared by 800 nm strong-field ionization. XTAS simultaneously probes atoms at the carbon K-edge (280–300 eV) and chlorine L-edge (195–220 eV). Comparison of experiment to X-ray spectra computed by orbital-optimized density functional theory (OO-DFT) indicates that after ionization, CCl 4 + undergoes symmetry breaking driven by Jahn–Teller distortion away from the initial tetrahedral structure (T d ) in 6 ± 2 fs. The resultant symmetry-broken covalently bonded form subsequently separates to a noncovalently bound complex between CCl 3 + and Cl over 90 ± 10 fs, which is again predicted by theory. Finally, after more than 800 fs, L-edge signals for atomic Cl are observed, indicating dissociation to free CCl 3 + and Cl. The results for Jahn–Teller distortion to the symmetry-broken form of CCl 4 + and formation of the Cl–CCl+3 complex characterize previously unobserved new species along the route to dissociation. 
    more » « less
  4. null (Ed.)